• Title/Summary/Keyword: bias errors

Search Result 312, Processing Time 0.03 seconds

Estimation of baro-altimeter errors via model transition technique (모델 전이 기법을 이용한 기압고도계의 오차 추정)

  • 황익호
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.32-35
    • /
    • 1996
  • In this paper, it is shown that the dominant errors of baro-altimeters can be characterized by bias and scale factor errors. Also an optimal filter for estimating both bias and scale factor is derived based on the concept of model transition. The optimal filter is, however, not realizable because the model transition hypotheses increase exponentially. Therefore a realizable suboptimal filter using the interacting multiple model(IMM) technique is proposed. Computer simulation results show that the estimation errors of the proposed filter are smaller than those of the conventional least squares algorithm with a forgetting factor when both the bias and the scale factor are varying.

  • PDF

A Study on Poly-pulse Pair Estimation Method for Reduction of Bias Errors in a Weather Radar (기상레이다에서의 편향오차 감소를 위한 다중 펄스페어 추정기법에 관한 연구)

  • 이종길
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.24 no.12B
    • /
    • pp.2292-2297
    • /
    • 1999
  • Some observed weather spectra show that nearly 25% of weather spectra are seriously skewed and can not be considered to be symmetric. However, the conventional pulse pair method was derived and has been evaluated under the assumption that the weather spectrum is symmetric and narrow. This means that the conventional pulse pair method may need reevaluation. Therefore, this paper analyzed the bias errors of pulse pair estimates in the skewed spectra. The bias errors of pulse pair mean estimates are more serious comparing with the pulse pair width estimates. In this paper, the poly-pulse pair method is suggested to reduce these bias errors of mean estimates. It was shown that the mean bias errors can be reduced remarkably using the newly suggested poly-pulse pair method.

  • PDF

Temperature Compensation and Analysis of an Low-cost IMU (온도에 따른 저급 IMU의 특성 분석 및 보상)

  • Jin, Yong;Park, Chan-Gook;Jee, Gyu-In
    • Proceedings of the KIEE Conference
    • /
    • 2000.07d
    • /
    • pp.2365-2367
    • /
    • 2000
  • The deterministic errors of semiconductor gyros and accelerometers must be estimated and compensated to develop the low-cost IMU using them. Generally, the dominant errors of the low-cost IMU are bias and misalignment errors. Bias is sensitive to temperature. Therefore, in this paper, the effect on temperature of bias is analyzed and temperature compensation are carryed out. It is shown by experiment that the compensation is efficient.

  • PDF

An Effective TOA-based Localization Method with Adaptive Bias Computation

  • Go, Seung-Ryeol
    • Journal of IKEEE
    • /
    • v.20 no.1
    • /
    • pp.1-8
    • /
    • 2016
  • In this paper, we propose an effective time-of-arrival (TOA)-based localization method with adaptive bias computation in indoor environments. The goal of the localization is to estimate an accurate target's location in wireless localization system. However, in indoor environments, non-line-of-sight (NLOS) errors block the signal propagation between target device and base station. The NLOS errors have significant effects on ranging between two devices for wireless localization. In TOA-based localization, finding the target's location inside the overlapped area in the TOA-circles is difficult. We present an effective localization method using compensated distance with adaptive bias computation. The proposed method is possible for the target's location to estimate an accurate location in the overlapped area using the measured distances with subtracted adaptive bias. Through localization experiments in indoor environments, estimation error is reduced comparing to the conventional localization methods.

A Study on Delivery Accuracy Using the Correlation between Errors (오차간의 상관관계를 이용하는 체계명중률 예측에 관한 연구)

  • Kim, Hyun Soo;Kim, Gunin;Kang, Hwan Il
    • The Journal of the Convergence on Culture Technology
    • /
    • v.4 no.3
    • /
    • pp.299-303
    • /
    • 2018
  • Generally, when predicting the accuracy of the anti-air artillery system, the error is classified as fixed bias, variable bias, and random error. Then the standard deviation on the target is expressed as the square root of the squared sum of each error value which comes from the random error and variable bias and in the case of fixed bias, the mean value is shifted as the sum of errors from the fixed bias. At this time, the variables indicating the displacement of the direction of azimuth and elevation direction with regard to the change of the unit value of each error are weighted. These errors are then used to predict the system's delivery accuracy through a normally distributed integral. This paper presents a method of predicting system accuracy by considering the correlation of errors. This approach shows that it helps to predict the delivery accuracy of the system, precisely.

Detection of a bias level in prediction errors due to input accelerations (입력 가속에서 비롯된 innovation 바이어스 레벨의 검출)

  • 신해곤;홍순목
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10a
    • /
    • pp.554-557
    • /
    • 1992
  • In this paper the normalized innovations squared of a Kalman filter is used to detect a bias level in prediction errors due to target accelerations. The probability density function of the normalized innovation squared is obtained for a steady state Kalman filter, and it is used to calculate the detection probability of the bias level. A typical example is given to compute the detection probability.

  • PDF

Estimating the AUC of the MROC curve in the presence of measurement errors

  • G, Siva;R, Vishnu Vardhan;Kamath, Asha
    • Communications for Statistical Applications and Methods
    • /
    • v.29 no.5
    • /
    • pp.533-545
    • /
    • 2022
  • Collection of data on several variables, especially in the field of medicine, results in the problem of measurement errors. The presence of such measurement errors may influence the outcomes or estimates of the parameter in the model. In classification scenario, the presence of measurement errors will affect the intrinsic cum summary measures of Receiver Operating Characteristic (ROC) curve. In the context of ROC curve, only a few researchers have attempted to study the problem of measurement errors in estimating the area under their respective ROC curves in the framework of univariate setup. In this paper, we work on the estimation of area under the multivariate ROC curve in the presence of measurement errors. The proposed work is supported with a real dataset and simulation studies. Results show that the proposed bias-corrected estimator helps in correcting the AUC with minimum bias and minimum mean square error.

Accuracy and Error Characteristics of SMOS Sea Surface Salinity in the Seas around Korea

  • Park, Kyung-Ae;Park, Jae-Jin
    • Journal of the Korean earth science society
    • /
    • v.41 no.4
    • /
    • pp.356-366
    • /
    • 2020
  • The accuracy of satellite-observed sea surface salinity (SSS) was evaluated in comparison with in-situ salinity measurements from ARGO floats and buoys in the seas around the Korean Peninsula, the northwest Pacific, and the global ocean. Differences in satellite SSS and in-situ measurements (SSS errors) indicated characteristic dependences on geolocation, sea surface temperature (SST), and other oceanic and atmospheric conditions. Overall, the root-mean-square (rms) errors of non-averaged SMOS SSSs ranged from approximately 0.8-1.08 psu for each in-situ salinity dataset consisting of ARGO measurements and non-ARGO data from CTD and buoy measurements in both local seas and the ocean. All SMOS SSSs exhibited characteristic negative bias errors at a range of -0.50- -0.10 psu in the global ocean and the northwest Pacific, respectively. Both rms and bias errors increased to 1.07 psu and -0.17 psu, respectively, in the East Sea. An analysis of the SSS errors indicated dependence on the latitude, SST, and wind speed. The differences of SMOS-derived SSSs from in-situ salinity data tended to be amplified at high latitudes (40-60°N) and high sea water salinity. Wind speeds contributed to the underestimation of SMOS salinity with negative bias compared with in-situ salinity measurements. Continuous and extensive validation of satellite-observed salinity in the local seas around Korea should be further investigated for proper use.

Covariance analysis of strapdown INS considering characteristics of gyrocompass alignment errors (자이로 컴파스 얼라인먼트 오차특성을 고려한 스트랩다운 관성항법장치의 상호분산해석)

  • 박흥원;박찬국;이장규
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10a
    • /
    • pp.34-39
    • /
    • 1993
  • Presented in this paper is a complete error covariance analysis for strapdown inertial navigation system(SDINS). We have found that in SDINS the cross-coupling terms in gyrocompass alignment errors can significantly influence the SDINS error propagation. Initial heading error has a close correlation with the east component of gyro bias erro, while initial level tilt errors are closely related to accelerometer bias errors. In addition, pseudo-state variables are introduced in covariance analysis for SDINS utilizing the characteristics of gyrocompass alignment errors. This approach simplifies the covariance analysis because it makes the initial error covariance matrix to a diagonal form. Thus a real implementation becomes easier. The approach is conformed by comparing the results for a simplified case with the covariance analysis obtained from the conventional SDINS error model.

  • PDF

A Study on the Detection of Hazardous Weather Conditions by a Doppler Weather Radar (도플러 레이다를 이용한 기상위험 탐지에 관한 연구)

  • 이종길
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.19 no.3
    • /
    • pp.533-542
    • /
    • 1994
  • In a Doppler weather radar, high resolution windspeed profile measurements are needed to provide reliable detection of a hazardous weather condition. For this purpose, the pulse-pair method is generally considered to be the most efficient estimator. However, this estimator has some bias errors due to asymmetric spectra and may yield meaningless results in the case of a multimodal return spectrum in this paper, bias errors were analyzed and an improved method was suggested to reduece these errors. For the case of a multimodal or seriously skewed spectrum, the modes of spectrum may provide more reliable information than the statistical mean. Therefore, the idea of a relatively simple mode estimator is also developed.

  • PDF