• 제목/요약/키워드: best proximity point

검색결과 21건 처리시간 0.025초

A FULL-NEWTON STEP INFEASIBLE INTERIOR-POINT ALGORITHM FOR LINEAR PROGRAMMING BASED ON A SELF-REGULAR PROXIMITY

  • Liu, Zhongyi;Chen, Yue
    • Journal of applied mathematics & informatics
    • /
    • 제29권1_2호
    • /
    • pp.119-133
    • /
    • 2011
  • This paper proposes an infeasible interior-point algorithm with full-Newton step for linear programming. We introduce a special self-regular proximity to induce the feasibility step and also to measure proximity to the central path. The result of polynomial complexity coincides with the best-known iteration bound for infeasible interior-point methods, namely, O(n log n/${\varepsilon}$).

PROXIMAL TYPE CONVERGENCE RESULTS USING IMPLICIT RELATION AND APPLICATIONS

  • Om Prakash Chauhan;Basant Chaudhary;Harsha Atre
    • Nonlinear Functional Analysis and Applications
    • /
    • 제29권1호
    • /
    • pp.209-224
    • /
    • 2024
  • The goal of this study is to instigate various new and novel optimum proximity point theorems using the notion of implicit relation type ℶ-proximal contraction for non-self mappings. An illustrated example is used to demonstrate the validity of the obtained results. Furthermore, some uniqueness results for proximal contractions are also furnished with partial order and graph. Various well-known discoveries in the present state-of-the-art are enhanced, extended, unified, and generalized by our findings. As an application, we generate some fixed point results fulfilling a modified contraction and a graph contraction, using the profundity of the established results.

NEW PRIMAL-DUAL INTERIOR POINT METHODS FOR P*(κ) LINEAR COMPLEMENTARITY PROBLEMS

  • Cho, Gyeong-Mi;Kim, Min-Kyung
    • 대한수학회논문집
    • /
    • 제25권4호
    • /
    • pp.655-669
    • /
    • 2010
  • In this paper we propose new primal-dual interior point methods (IPMs) for $P_*(\kappa)$ linear complementarity problems (LCPs) and analyze the iteration complexity of the algorithm. New search directions and proximity measures are defined based on a class of kernel functions, $\psi(t)=\frac{t^2-1}{2}-{\int}^t_1e{^{q(\frac{1}{\xi}-1)}d{\xi}$, $q\;{\geq}\;1$. If a strictly feasible starting point is available and the parameter $q\;=\;\log\;\(1+a{\sqrt{\frac{2{\tau}+2{\sqrt{2n{\tau}}+{\theta}n}}{1-{\theta}}\)$, where $a\;=\;1\;+\;\frac{1}{\sqrt{1+2{\kappa}}}$, then new large-update primal-dual interior point algorithms have $O((1\;+\;2{\kappa})\sqrt{n}log\;n\;log\;{\frac{n}{\varepsilon}})$ iteration complexity which is the best known result for this method. For small-update methods, we have $O((1\;+\;2{\kappa})q{\sqrt{qn}}log\;{\frac{n}{\varepsilon}})$ iteration complexity.

POLYNOMIAL COMPLEXITY OF PRIMAL-DUAL INTERIOR-POINT METHODS FOR CONVEX QUADRATIC PROGRAMMING

  • Liu, Zhongyi;Sun, Wenyu;De Sampaio, Raimundo J.B.
    • Journal of applied mathematics & informatics
    • /
    • 제27권3_4호
    • /
    • pp.567-579
    • /
    • 2009
  • Recently, Peng et al. proposed a primal-dual interior-point method with new search direction and self-regular proximity for LP. This new large-update method has the currently best theoretical performance with polynomial complexity of O($n^{\frac{q+1}{2q}}\;{\log}\;{\frac{n}{\varepsilon}}$). In this paper we use this search direction to propose a primal-dual interior-point method for convex quadratic programming (QP). We overcome the difficulty in analyzing the complexity of the primal-dual interior-point methods for convex quadratic programming, and obtain the same polynomial complexity of O($n^{\frac{q+1}{2q}}\;{\log}\;{\frac{n}{\varepsilon}}$) for convex quadratic programming.

  • PDF

New large-update primal interior point algorithms based on kernel functions for LCPs

  • Kim, Min-Kyung;Cho, Gyeong-Mi
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제11권4호
    • /
    • pp.69-88
    • /
    • 2007
  • In this paper we propose new large-update primal-dual interior point algorithms for $P_{\neq}({\kappa})$ linear complementarity problems(LCPs). New search directions and proximity measures are proposed based on a specific class of kernel functions, ${\psi}(t)={\frac{t^{p+1}-1}{p+1}}+{\frac{t^{-q}-1}{q}}$, q>0, $p{\in}[0,\;1]$, which are the generalized form of the ones in [3] and [12]. It is the first to use this class of kernel functions in the complexity analysis of interior point method(IPM) for $P_*({\kappa})$LCPs. We showed that if a strictly feasible starting point is available, then new large-update primal-dual interior point algorithms for $P_*({\kappa})$ LCPs have the best known complexity $O((1+2{\kappa}){\sqrt{2n}}(log2n)log{\frac{n}{\varepsilon}})$ when p=1 and $q=\frac{1}{2}(log2n)-1$.

  • PDF

AN ELIGIBLE PRIMAL-DUAL INTERIOR-POINT METHOD FOR LINEAR OPTIMIZATION

  • Cho, Gyeong-Mi;Lee, Yong-Hoon
    • East Asian mathematical journal
    • /
    • 제29권3호
    • /
    • pp.279-292
    • /
    • 2013
  • It is well known that each kernel function defines a primal-dual interior-point method(IPM). Most of polynomial-time interior-point algorithms for linear optimization(LO) are based on the logarithmic kernel function([2, 11]). In this paper we define a new eligible kernel function and propose a new search direction and proximity function based on this function for LO problems. We show that the new algorithm has ${\mathcal{O}}((log\;p){\sqrt{n}}\;log\;n\;log\;{\frac{n}{\epsilon}})$ and ${\mathcal{O}}((q\;log\;p)^{\frac{3}{2}}{\sqrt{n}}\;log\;{\frac{n}{\epsilon}})$ iteration bound for large- and small-update methods, respectively. These are currently the best known complexity results.

AN ELIGIBLE KERNEL BASED PRIMAL-DUAL INTERIOR-POINT METHOD FOR LINEAR OPTIMIZATION

  • Cho, Gyeong-Mi
    • 호남수학학술지
    • /
    • 제35권2호
    • /
    • pp.235-249
    • /
    • 2013
  • It is well known that each kernel function defines primal-dual interior-point method (IPM). Most of polynomial-time interior-point algorithms for linear optimization (LO) are based on the logarithmic kernel function ([9]). In this paper we define new eligible kernel function and propose a new search direction and proximity function based on this function for LO problems. We show that the new algorithm has $\mathcal{O}(({\log}\;p)^{\frac{5}{2}}\sqrt{n}{\log}\;n\;{\log}\frac{n}{\epsilon})$ and $\mathcal{O}(q^{\frac{3}{2}}({\log}\;p)^3\sqrt{n}{\log}\;\frac{n}{\epsilon})$ iteration complexity for large- and small-update methods, respectively. These are currently the best known complexity results for such methods.

STATCOM을 이용한 전력계통의 전압안정도 향상방안에 관한 연구 (A Study on Voltage Stability Enhancement of Power System using the STATCOM)

  • 김재현;김양일;기경현;정성원
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2003년도 추계학술대회 논문집 전력기술부문
    • /
    • pp.255-258
    • /
    • 2003
  • In this paper there are different methods used to study the voltage stability, such as the P-V curve method. Jacobian method and the voltage collapse proximity indicator(L-index) method. The P-V curve method is to check operating margin from the maximum operating point. The Jacobian method is to check the eigenvalue or the minimum singular value of the load flow Jacobian matrix. If the power system is unstable, one of the eigenvalues, at least, has crossed the imaginary axis. The L-index method is to quantify how to close a particular operating point. This paper describes these methods to select the best location of FACTS and demonstrate the effectiveness of STATCOM of voltage stability on the IEEE 9-bus system.

  • PDF

NEW COMPLEXITY ANALYSIS OF IPM FOR $P_*({\kappa})$ LCP BASED ON KERNEL FUNCTIONS

  • Cho, Gyeong-Mi;Kim, Min-Kyung;Lee, Yong-Hoon
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제12권4호
    • /
    • pp.227-238
    • /
    • 2008
  • In this paper we extend primal-dual interior point algorithm for linear optimization (LO) problems to $P_*({\kappa})$ linear complementarity problems(LCPs) ([1]). We define proximity functions and search directions based on kernel functions, ${\psi}(t)=\frac{t^{p+1}-1}{p+1}-{\log}\;t$, $p{\in}$[0, 1], which is a generalized form of the one in [16]. It is the first to use this class of kernel functions in the complexity analysis of interior point method(IPM) for $P_*({\kappa})$ LCPs. We show that if a strictly feasible starting point is available, then new large-update primal-dual interior point algorithms for $P_*({\kappa})$ LCPs have $O((1+2{\kappa})nlog{\frac{n}{\varepsilon}})$ complexity which is similar to the one in [16]. For small-update methods, we have $O((1+2{\kappa})\sqrt{n}{\log}{\frac{n}{\varepsilon}})$ which is the best known complexity so far.

  • PDF

송전손실 상태식별법에 의한 정태 전압안정성 해석 (Static Voltage Stability Analysis based on T/L Loss System Identification)

  • 전동훈;김정훈;심건보;이봉용
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1992년도 하계학술대회 논문집 A
    • /
    • pp.145-148
    • /
    • 1992
  • The best index should show the margins to the operating limit at the present operating point without much efforts. Such voltage collapse proximity index has been proposed in this study. Differently from the normal procedure in which every bus load is increased at the same propotion, bus load increase toward the direction of T/L loss increase has been applied in this study. Sample studies show the usefulness and the practical applicability in voltage stability analysis.

  • PDF