• 제목/요약/키워드: bending deformation

검색결과 1,185건 처리시간 0.026초

평면연삭에서 다변수 입력에 의한 형상오차 해석 (The Geometric Error Analysis by Various Various Inputs In Surface Grinding)

  • 김강석;홍순익;송지복
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1997년도 춘계학술대회 논문집
    • /
    • pp.868-872
    • /
    • 1997
  • The thermal deformation of a workpiece during grinding is one of the most important factors that affect a flatness of a grinding surface. The heat generated in one-pass surface grinding causes the convex deformation of a workpiece. Therefore, the ground surface represents a conacve profile. In the analysis a simple model of the temperature distribution,based on the result of a finite element method, is applied. The analyzed results are compared with experimental results in surface grinding. The main results obtained are as follows; (1) The temperature distibution of a workpiece by FEM is comparatively in good agreement with the experimental results. (2) The bending moment by generated heat cause a convex deformation of the workpiece and it reads to a concave profile of the grinding surface.

  • PDF

샌드위치 패널의 전단변형이 파동전달 및 방음 특성에 미치는 영향 (Effects of shear deformation of sandwich panels on wave propagation and sound radiation characteristics)

  • 박준홍
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2005년도 추계 학술대회논문집(수송기계편)
    • /
    • pp.110-113
    • /
    • 2005
  • Theoretical models to study the vibro-acoustic performance of a sandwich panel are proposed. The wave propagation characteristics are analyzed, and dispersion relation is derived. The vibration Is analyzed using the Mindlin plate theory. The vibration of the compliantly supported Mindlin plate is investigated using the Rayleigh-Ritz method. The Timoshenko beam functions are used as trial functions. The model is applied to numerically investigate the influence of the plate mechanical properties. The vibro-acoustic properties are mostly determined by bending deformation at low frequencies. At higher frequencies, the shear deformation has a strong influence. The proposed numerical model is used to estimate the optimal panel properties that result in minimum sound radiation. With increasing dynamic stiffnesses the vibration response decreases but the radiating wavenumber components increase.

  • PDF

A unified consistent couple stress beam theory for functionally graded microscale beams

  • Chih-Ping Wu;Zhen Huang
    • Steel and Composite Structures
    • /
    • 제51권2호
    • /
    • pp.103-116
    • /
    • 2024
  • Based on the consistent couple stress theory (CCST), we develop a unified formulation for analyzing the static bending and free vibration behaviors of functionally graded (FG) microscale beams (MBs). The strong forms of the CCST-based Euler-Bernoulli, Timoshenko, and Reddy beam theories, as well as the CCST-based sinusoidal, exponential, and hyperbolic shear deformation beam theories, can be obtained by assigning some specific shape functions of the shear deformations varying through the thickness direction of the FGMBs in the unified formulation. The above theories are thus included as special cases of the unified CCST. A comparative study between the results obtained using a variety of CCST-based beam theories and those obtained using their modified couple stress theory-based counterparts is carried out. The impacts of some essential factors on the deformation, stress, and natural frequency parameters of the FGMBs are examined, including the material length-scale parameter, the aspect ratio, and the material-property gradient index.

Experimental and numerical studies on cyclic behavior of continuous-tenon joints in column-and-tie timber construction

  • Qi, Liangjie;Xue, Jianyang;Xu, Dan
    • Structural Engineering and Mechanics
    • /
    • 제75권5호
    • /
    • pp.529-540
    • /
    • 2020
  • The mechanical properties of timber construction have drawn more attention after the 2013 Lushan earthquake. A strong desire to preserve this ancient architectural styles has sprung up in recent years, especially for residential buildings of the mountainous areas. In the column-and-tie timber construction, continuous-tenon joints are the most common structural form to connect the chuanfang (similar to the beam in conventional structures) and the column. To study the cyclic performance of the continuous-tenon joints in column-and-tie timber construction, the reversed lateral cyclic loading tests were carried out on three 3/4 scale specimens with different section heights of the chuanfang. The mechanical behavior was assessed by studying the ultimate bending capacity, deformation ductility and energy dissipation capacity. Test results showed that the slippage of chuanfang occurred when the specimens entered the plastic stage, and the slippage degree increased with the increase of the section height of chuanfang. An obvious plastic deformation of the chuanfang occurred due to the mutual squeezing between the column and chuanfang. A significant pinching was observed on the bending moment-rotation curves, and it was more pronounced as the section height of chuanfang increased. The further numerical investigations showed that the flexural capacity and initial stiffness of the continuous-tenon joints increased with the increase of friction coefficient between the chuanfang and the column, and a more obvious increasing of bending moment occurred after the material yielding. The compressive strength perpendicular to grain of the material played a more significant role in the ultimate bending capacity of continuous-tenon joints than the compressive strength parallel to grain.

Mechanical Modeling of Rollable OLED Display Apparatus Considering Spring Component

  • Ma, Boo Soo;Jo, Woosung;Kim, Wansun;Kim, Taek-Soo
    • 마이크로전자및패키징학회지
    • /
    • 제27권2호
    • /
    • pp.19-26
    • /
    • 2020
  • Flexible displays have been evolved into curved, foldable, and rollable as the degree of bending increases. Due to the presence of brittle electrodes (e.g. indium-tin oxide (ITO)) that easily cracked and delaminated under severe bending deformation, lowering mechanical stress of the electrodes has been critical issue. Because of this, mechanical stress of brittle electrode in flexible displays has been analyzed mostly in terms of bending radius. On the other hand, in order to make rollable display, various mechanical components such as roller and spring are needed to roll-up or extend the screen for the rollable display apparatus. By these mechanical components, brittle electrode in the rollable display is subjected to the excessive tensile stress due to the retracting force as well as the bending stress by the roller. In this study, mechanical deformation of rollable OLED display was modeled considering boundary conditions of the apparatus. An analytical modeling based on the classical beam theory was introduced in order to investigate the mechanical behavior of the rollable display. In addition, finite element analysis (FEA) was used to analyze the effect of mechanical components in the apparatus on the brittle electrode. Furthermore, a strategy for improving the mechanical reliability of the rollable display was suggested through controlling the stiffness of adhesives in the display panel.

An efficient hyperbolic shear deformation theory for bending, buckling and free vibration of FGM sandwich plates with various boundary conditions

  • Abdelaziz, Hadj Henni;Meziane, Mohamed Ait Amar;Bousahla, Abdelmoumen Anis;Tounsi, Abdelouahed;Mahmoud, S.R.;Alwabli, Afaf S.
    • Steel and Composite Structures
    • /
    • 제25권6호
    • /
    • pp.693-704
    • /
    • 2017
  • In this research, a simple hyperbolic shear deformation theory is developed and applied for the bending, vibration and buckling of powerly graded material (PGM) sandwich plate with various boundary conditions. The displacement field of the present model is selected based on a hyperbolic variation in the in-plane displacements across the plate's thickness. By splitting the deflection into the bending and shear parts, the number of unknowns and equations of motion of the present formulation is reduced and hence makes them simple to use. Equations of motion are obtained from Hamilton's principle. Numerical results for the natural frequencies, deflections and critical buckling loads of several types of powerly graded sandwich plates under various boundary conditions are presented. The accuracy of the present formulation is demonstrated by comparing the computed results with those available in the literature. As conclusion, this theory is as accurate as other theories available in the literature and so it becomes more attractive due to smaller number of unknowns.

The nano scale bending and dynamic properties of isolated protein microtubules based on modified strain gradient theory

  • Benmansour, Djazia Leila;Kaci, Abdelhakim;Bousahla, Abdelmoumen Anis;Heireche, Houari;Tounsi, Abdelouahed;Alwabli, Afaf S.;Alhebshi, Alawiah M.;Al-ghmady, Khalid;Mahmoud, S.R.
    • Advances in nano research
    • /
    • 제7권6호
    • /
    • pp.443-457
    • /
    • 2019
  • In this investigation, dynamic and bending behaviors of isolated protein microtubules are analyzed. Microtubules (MTs) can be considered as bio-composite structures that are elements of the cytoskeleton in eukaryotic cells and posses considerable roles in cellular activities. They have higher mechanical characteristics such as superior flexibility and stiffness. In the modeling purpose of microtubules according to a hollow beam element, a novel single variable sinusoidal beam model is proposed with the conjunction of modified strain gradient theory. The advantage of this model is found in its new displacement field involving only one unknown as the Euler-Bernoulli beam theory, which is even less than the Timoshenko beam theory. The equations of motion are constructed by considering Hamilton's principle. The obtained results are validated by comparing them with those given based on higher shear deformation beam theory containing a higher number of variables. A parametric investigation is established to examine the impacts of shear deformation, length scale coefficient, aspect ratio and shear modulus ratio on dynamic and bending behaviors of microtubules. It is remarked that when length scale coefficients are almost identical of the outer diameter of MTs, microstructure-dependent behavior becomes more important.

탄소 나노튜브 보강 기능경사복합재 판의 등기하 거동 해석 (Isogeometric Analysis of FG-CNTRC Plate in Bending based on Higher-order Shear Deformation Theory)

  • 전준태
    • 한국재난정보학회 논문집
    • /
    • 제17권4호
    • /
    • pp.839-847
    • /
    • 2021
  • 연구목적: 본 연구에서는 휨을 받는 탄소 나노튜브 보강 기능경사복합재 판의 구조적 거동을 해석하였다. 이를 위해, 등기하해석과 고차전단변형이론을 결합한 수치해석 방법을 이용하였다. 연구방법: 전단보정계수를 사용하지 않고 기하학적 비선형성을 고려할 수 있는 고차전단변형이론을 통하여 휨이 작용하는 탄소 나노튜브 보강 기능경사복합재 판의 비선형 거동방정식을 유도하였으며, 수정된 Newton-Raphson 반복 기법을 사용하여 등기하해석방법에 기반한 시스템 방정식의 해를 구하였다. 연구결과: 탄소 나노튜브의 배치 양상, 폭-두께 비 및 경계조건은 휨을 받는 탄소 나노튜브 보강 기능경사복합재 판의 구조적 거동에 많은 영향을 끼침을 확인하였다. 결론: 제안된 고차전단변형이론에 근거한 등기하해석 방법은 휨을 받는 탄소 나노튜브 보강 기능경사복합재 판의 구조적 거동을 정확하고 효과적으로 해석하는 것을 알 수 있었다.

Experimental study on energy dissipation and damage of fabricated partially encased composite beams

  • Wu, Kai;Liu, Xiaoyi;Lin, Shiqi;Tan, Chengwei;Lu, Huiyu
    • Computers and Concrete
    • /
    • 제30권5호
    • /
    • pp.311-321
    • /
    • 2022
  • The interfacial bond strength of partially encased composite (PEC) structure tends to 0, therefore, the cast-in-place concrete theoretically cannot embody better composite effect than the fabricated structure. A total of 12 specimens were designed and experimented to investigate the energy dissipation and damage of fabricated PEC beam through unidirectional cyclic loading test. Because the concrete on both sides of the web was relatively independent, some specimens showed obvious asymmetric concrete damage, which led to specimens bearing torsion effect at the later stage of loading. Based on the concept of the ideal elastoplastic model of uniaxial tensile steel and the principle of equivalent energy dissipation, the energy dissipation ductility coefficient is proposed, which can simultaneously reflect the deformability and bearing capacity. In view of the whole deformation of the beam, the calculation formula of energy dissipation is put forward, and the energy dissipation and its proportion of shear-bending region and pure bending region are calculated respectively. The energy dissipation efficiency of the pure bending region is significantly higher than that of the shear-bending region. The setting of the screw arbors is conducive to improving the energy dissipation capacity of the specimens. Under the condition of setting the screw arbors and meeting the reasonable shear span ratio, reducing the concrete pouring thickness can lighten the deadweight of the component and improve the comprehensive benefit, and will not have an adverse impact on the energy dissipation capacity of the beam. A damage model is proposed to quantify the damage changes of PEC beams under cyclic load, which can accurately reflect the load damage and deformation damage.

탄소성 변형을 고려한 타이로드 고정 회전체의 동역학 해석 (Dynamic Analysis of Tie-rod-fastened Rotor Considering Elastoplastic Deformation)

  • 서동찬;김경희;이도훈;이보라;서준호
    • Tribology and Lubricants
    • /
    • 제40권1호
    • /
    • pp.8-16
    • /
    • 2024
  • This study conducts numerical modeling and eigen-analysis of a rod-fastened rotor, which is mainly used in aircraft gas turbine engines in which multiple disks are in contact through curvic coupling. Nayak's theory is adopted to calculate surface parameters measured from the tooth profile of the curvic coupling gear. Surface parameters are important design parameters for predicting the stiffness between contact surfaces. Based on the calculated surface parameters, elastoplastic contact analysis is performed according to the interference between two surfaces based on the Greenwood-Williamson model. The equivalent bending stiffness is predicted based on the shape and elastoplastic contact stiffness of the curvic coupling. An equation of motion of the rod-fastened rotor, including the bending stiffness of the curvic coupling, is developed. Methods for applying the bending stiffness of a curvic coupling to the equation of motion and for modeling the equation of motion of a rotor that includes both inner and outer rotors are introduced. Rotordynamic analysis is performed through one-dimensional finite element analysis, and each element is modeled based on Timoshenko beam theory. Changes in bending stiffness and the resultant critical speed change in accordance with the rod fastening force are predicted, and the corresponding mode shapes are analyzed.