DOI QR코드

DOI QR Code

The nano scale bending and dynamic properties of isolated protein microtubules based on modified strain gradient theory

  • Benmansour, Djazia Leila (Laboratoire de Modelisation et Simulation Multi-echelle, Departement de Physique, Faculte des Sciences Exactes, Departement de Physique, Universite de Sidi Bel Abbes) ;
  • Kaci, Abdelhakim (Universite Dr Tahar Moulay, Faculte de Technologie, Departement de Genie Civil et Hydraulique) ;
  • Bousahla, Abdelmoumen Anis (Laboratoire de Modelisation et Simulation Multi-echelle, Departement de Physique, Faculte des Sciences Exactes, Departement de Physique, Universite de Sidi Bel Abbes) ;
  • Heireche, Houari (Laboratoire de Modelisation et Simulation Multi-echelle, Departement de Physique, Faculte des Sciences Exactes, Departement de Physique, Universite de Sidi Bel Abbes) ;
  • Tounsi, Abdelouahed (Material and Hydrology Laboratory, University of Sidi Bel Abbes, Faculty of Technology, Civil Engineering Department) ;
  • Alwabli, Afaf S. (Department of Biology, Faculty of Sciences, King Abdulaziz University) ;
  • Alhebshi, Alawiah M. (Department of Biology, Faculty of Sciences, King Abdulaziz University) ;
  • Al-ghmady, Khalid (Department of Biology, Faculty of Sciences, King Abdulaziz University) ;
  • Mahmoud, S.R. (GRC Department, Jeddah Community College, King Abdulaziz University)
  • Received : 2019.06.09
  • Accepted : 2019.08.28
  • Published : 2019.11.25

Abstract

In this investigation, dynamic and bending behaviors of isolated protein microtubules are analyzed. Microtubules (MTs) can be considered as bio-composite structures that are elements of the cytoskeleton in eukaryotic cells and posses considerable roles in cellular activities. They have higher mechanical characteristics such as superior flexibility and stiffness. In the modeling purpose of microtubules according to a hollow beam element, a novel single variable sinusoidal beam model is proposed with the conjunction of modified strain gradient theory. The advantage of this model is found in its new displacement field involving only one unknown as the Euler-Bernoulli beam theory, which is even less than the Timoshenko beam theory. The equations of motion are constructed by considering Hamilton's principle. The obtained results are validated by comparing them with those given based on higher shear deformation beam theory containing a higher number of variables. A parametric investigation is established to examine the impacts of shear deformation, length scale coefficient, aspect ratio and shear modulus ratio on dynamic and bending behaviors of microtubules. It is remarked that when length scale coefficients are almost identical of the outer diameter of MTs, microstructure-dependent behavior becomes more important.

Keywords

References

  1. Abdelaziz, H.H., Meziane, M.A.A, Bousahla, A.A., Tounsi, A., Mahmoud, S.R. and Alwabli, A.S. (2017), "An efficient hyperbolic shear deformation theory for bending, buckling and free vibration of FGM sandwich plates with various boundary conditions", Steel Compos. Struct., Int. J., 25(6), 693-704. https://doi.org/10.12989/scs.2017.25.6.693
  2. Abualnour, M., Houari, M.S.A., Tounsi, A., Adda Bedia, E.A. and Mahmoud, S.R. (2018), "A novel quasi 3D trigonometric plate theory for free vibration analysis of advanced composite plates", Compos. Struct., 184, 688-697. https://doi.org/10.1016/j.compstruct.2017.10.047
  3. Adda Bedia, W., Houari, M.S.A., Bessaim, A., Bousahla, A.A., Tounsi, A., Saeed, T. and Alhodaly, M.S. (2019), "A new hyperbolic two-unknown beam model for bending and buckling analysis of a nonlocal strain gradient nanobeams", J. Nano Res.arch, 57, 175-191. https://doi.org/10.4028/www.scientific.net/JNanoR.57.175
  4. Addou, F.Y., Meradjah, M., M.A.A, Bousahla, Benachour, A., Bourada, F., Tounsi, A. and Mahmoud, S.R. (2019), "Influences of porosity on dynamic response of FG plates resting on Winkler/Pasternak/Kerr foundation using quasi 3D HSDT", Comput. Concrete, Int. J., 24(4), 347-367. https://doi.org/10.12989/cac.2019.24.4.347
  5. Ahouel, M., Houari, M.S.A., Adda Bedia, E.A. and Tounsi, A. (2016), "Size-dependent mechanical behavior of functionally graded trigonometric shear deformable nanobeams including neutral surface position concept", Steel Compos. Struct., Int. J., 20(5), 963-981. https://doi.org/10.12989/scs.2016.20.5.963
  6. Aifantis, E.C. (1999), "Gradient deformation models at nano, micro, and macro scales", J. Eng. Mater. Technol., 121, 189-202. https://doi.org/10.1115/1.2812366
  7. Ait Atmane, H., Tounsi, A. and Bernard, F. (2017), "Effect of thickness stretching and porosity on mechanical response of a functionally graded beams resting on elastic foundations", Int. J. Mech. Mater. Des., 13(1), 71-84. https://doi.org/10.1007/s10999-015-9318-x
  8. Akbas, S.D. (2018), "Bending of a cracked functionally graded nanobeam", Adv. Nano Res., Int. J., 6(3), 219-242. https://doi.org/10.12989/anr.2018.6.3.219
  9. Akgoz, B. and Civalek, O . (2011a), "Strain gradient elasticity and modified couple stress models for buckling analysis of axially loaded micro-scaled beams", Int. J. Eng. Sci., 49, 1268-1280. https://doi.org/10.1016/j.ijengsci.2010.12.009
  10. Akgoz, B. and Civalek, O. (2011b), "Application of strain gradient elasticity theory for buckling analysis of protein microtubules", Curr. Appl. Phys., 11, 1133-1138. https://doi.org/10.1016/j.cap.2011.02.006
  11. Akgoz, B. and Civalek, O. (2012a), "Analysis of micro-sized beams for various boundary conditions based on the strain gradient elasticity theory", Arch. Appl. Mech., 82, 423-443. https://doi.org/10.1007/s00419-011-0565-5
  12. Akgoz, B. and Civalek, O. (2012b), "Analysis of microtubules based on strain gradient elasticity and modified couple stress theories", Adv. Vib. Eng., 11(4), 385-400.
  13. Akgoz, B. and Civalek, O. (2013a), "Longitudinal vibration analysis of strain gradient bars made of functionally graded materials (FGM)", Compos. Part B-Eng., 55, 263-268. https://doi.org/10.1016/j.compositesb.2013.06.035
  14. Akgoz, B. and Civalek, O. (2013b), "A size-dependent shear deformation beam model based on the strain gradient elasticity theory", Int. J. Eng. Sci., 70, 1-14. https://doi.org/10.1016/j.ijengsci.2013.04.004
  15. Akgoz, B. and Civalek, O. (2013c), "Buckling analysis of functionally graded microbeams based on the strain gradient theory", Acta Mech., 224, 2185-2201. https://doi.org/10.1007/s00707-013-0883-5
  16. Akgoz, B. and Civalek, O. (2014a), "Mechanical analysis of isolated microtubules based on a higher-order shear deformation beam theory", Compos. Struct., 118, 9-18. https://doi.org/10.1016/j.compstruct.2014.07.029
  17. Akgoz, B. and Civalek, O. (2014b), "Longitudinal vibration analysis for microbars based on strain gradient elasticity theory", J. Vib. Control, 20, 606-616. https://doi.org/10.1177/1077546312463752
  18. Akgoz, B. and Civalek, O. (2014c), "Shear deformation beam models for functionally graded microbeams with new shear correction factors", Compos. Struct., 112, 214-225. https://doi.org/10.1016/j.compstruct.2014.02.022
  19. Al-Basyouni, K.S., Tounsi, A. and Mahmoud, S.R. (2015), "Size dependent bending and vibration analysis of functionally graded micro beams based on modified couple stress theory and neutral surface position", Compos. Struct., 125, 621-630. https://doi.org/10.1016/j.compstruct.2014.12.070
  20. Amos, L.A. and Amos, W.B. (1991), Molecules of the Cytoskeleton, MacMillan, London, UK.
  21. Ansari, R., Gholami, R. and Sahmani, S. (2011), "Free vibration analysis of size-dependent functionally graded microbeams based on the strain gradient Timoshenko beam theory", Compos. Struct., 94, 221-228. https://doi.org/10.1016/j.compstruct.2011.06.024
  22. Arefi, M., Bidgoli, E.M.R. and Zenkour, A.M. (2018), "Sizedependent free vibration and dynamic analyses of a sandwich microbeam based on higher-order sinusoidal shear deformation theory and strain gradient theory", Smart Struct. Syst., Int. J., 22(1), 27-40. https://doi.org/10.12989/sss.2018.22.1.027
  23. Artan, R. and Toksoz, A. (2013), "Stability analysis of gradient elastic beams by the method of initial value", Arch. Appl. Mech., 83, 1129-1144. https://doi.org/10.1007/s00419-013-0739-4
  24. Asghari, M., Kahrobaiyan, M.H., Nikfar, M. and Ahmadian, M.T. (2012), "A size-dependent nonlinear Timoshenko microbeam model based on the strain gradient theory", Acta Mech., 223, 1233-1249. https://doi.org/10.1007/s00707-012-0625-0
  25. Attia, A., Tounsi, A., Adda Bedia, E.A. and Mahmoud, S.R. (2015), "Free vibration analysis of functionally graded plates with temperature-dependent properties using various four variable refined plate theories", Steel Compos. Struct., Int. J., 18(1), 187-212. https://doi.org/10.12989/scs.2015.18.1.187
  26. Attia, A., Bousahla, A.A., Tounsi, A., Mahmoud, S.R. and Alwabli, A.S. (2018), "A refined four variable plate theory for thermoelastic analysis of FGM plates resting on variable elastic foundations", Struct. Eng. Mech., Int. J., 65(4), 453-464. https://doi.org/10.12989/sem.2018.65.4.453
  27. Avcar, M. (2015), "Effects of rotary inertia shear deformation and non-homogeneity on frequencies of beam", Struct. Eng. Mech., Int. J., 55(4), 871-884. https://doi.org/10.12989/sem.2015.55.4.871
  28. Avcar, M. (2016), "Effects of material non-homogeneity and two parameter elastic foundation on fundamental frequency parameters of Timoshenko beams", Acta Physica Polonica A, 130(1), 375-378. https://doi.org/10.12693/APhysPolA.130.375
  29. Avcar, M. (2019), "Free vibration of imperfect sigmoid and power law functionally graded beams", Steel Compos. Struct., Int. J., 30(6), 603-615. https://doi.org/10.12989/scs.2019.30.6.603
  30. Ayat, H., Kellouche, Y., Ghrici, M. and Boukhatem, B. (2018), "Compressive strength prediction of limestone filler concrete using artificial neural networks", Adv. Computat. Des., Int. J., 3(3), 289-302. https://doi.org/10.12989/acd.2018.3.3.289
  31. Bakhadda, B., Bachir Bouiadjra, M., Bourada, F., Bousahla, A.A., Tounsi, A. and Mahmoud, S.R. (2018), "Dynamic and bending analysis of carbon nanotube-reinforced composite plates with elastic foundation", Wind Struct., Int. J., 27(5), 311-324. https://doi.org/10.12989/was.2018.27.5.311
  32. Behera, S. and Kumari, P. (2018), "Free vibration of Levy-type rectangular laminated plates using efficient zig-zag theory", Adv. Computat. Des., Int. J., 3(3), 213-232. https://doi.org/10.12989/acd.2018.3.3.213
  33. Belabed, Z., Houari, M.S.A., Tounsi, A., Mahmoud, S.R. and Anwar Beg, O. (2014), "An efficient and simple higher order shear and normal deformation theory for functionally graded material (FGM) plates", Compos. B Eng., 60, 274-283. https://doi.org/10.1016/j.compositesb.2013.12.057
  34. Belabed, Z., Bousahla, A.A., Houari, M.S.A., Tounsi, A. and Mahmoud, S.R. (2018), "A new 3-unknown hyperbolic shear deformation theory for vibration of functionally graded sandwich plate", Earthq. Struct., Int. J., 14(2), 103-115. https://doi.org/10.12989/eas.2018.14.2.103
  35. Beldjelili, Y., Tounsi, A. and Mahmoud, S.R. (2016), "Hygrothermo mechanical bending of S-FGM plates resting on variable elastic foundations using a four-variable trigonometric plate theory", Smart Struct. Syst., Int. J., 18(4), 755-786. https://doi.org/10.12989/sss.2016.18.4.755
  36. Belkorissat, I., Houari, M.S.A., Tounsi, A., Adda Bedia, E.A. and Mahmoud, S.R. (2015), "On vibration properties of functionally graded nano-plate using a new nonlocal refined four variable model", Steel Compos. Struct., Int. J., 18(4), 1063-1081. https://doi.org/10.12989/scs.2015.18.4.1063
  37. Bellifa, H., Benrahou, K.H., Hadji, L., Houari, M.S.A. and Tounsi, A. (2016), "Bending and free vibration analysis of functionally graded plates using a simple shear deformation theory and the concept the neutral surface position", J. Braz. Soc. Mech. Sci. Eng., 38, 265-275. https://doi.org/10.1007/s40430-015-0354-0
  38. Bellifa, H., Benrahou, K.H., Bousahla, A.A., Tounsi, A. and Mahmoud, S.R. (2017a), "A nonlocal zeroth-order shear deformation theory for nonlinear postbuckling of nanobeams", Struct. Eng. Mech., Int. J., 62(6), 695-702. https://doi.org/10.12989/sem.2017.62.6.695
  39. Bellifa, H., Bakora, A., Tounsi, A., Bousahla, A.A. and Mahmoud, S.R. (2017b), "An efficient and simple four variable refined plate theory for buckling analysis of functionally graded plates", Steel Compos. Struct., Int. J., 25(3), 257-270. https://doi.org/10.12989/scs.2017.25.3.257
  40. Benchohra, M., Driz, H., Bakora, A., Tounsi, A., Adda Bedia, E.A. and Mahmoud, S.R. (2018), "A new quasi-3D sinusoidal shear deformation theory for functionally graded plates", Struct. Eng. Mech., Int. J., 65(1), 19-31. https://doi.org/10.12989/sem.2018.65.1.019
  41. Bendaho, B., Belabed, Z., Bourada, M., Benatta, M.A., Bourada, F. and Tounsi, A. (2019), "Assessment of new 2D and quasi-3D Nonlocal theories for free vibration analysis of size-dependent functionally graded (FG) nanoplates", Adv. Nano Res., Int. J., 7(4), 277-292 https://doi.org/10.12989/anr.2019.7.4.277
  42. Bennoun, M., Houari, M.S.A. and Tounsi, A. (2016), "A novel five variable refined plate theory for vibration analysis of functionally graded sandwich plates", Mech. Adv. Mater. Struct., 23(4), 423-431. https://doi.org/10.1080/15376494.2014.984088
  43. Bensaid, I., Bekhadda, A. and Kerboua, B. (2018), "Dynamic analysis of higher order shear-deformable nanobeams resting on elastic foundation based on nonlocal strain gradient theory", Adv. Nano Res., Int. J., 6(3), 279-298. https://doi.org/10.12989/anr.2018.6.3.279
  44. Bensattalah, T., Bouakkaz, K., Zidour, M. and Daouadji, T.H. (2018), "Critical buckling loads of carbon nanotube embedded in Kerr's medium", Adv. Nano Res., Int. J., 6(4), 339-356. https://doi.org/10.12989/anr.2018.6.4.339
  45. Bensattalah, T., Zidour, M. and Daouadji, T.S. (2019), "A new nonlocal beam model for free vibration analysis of chiral singlewalled carbon nanotubes", Compos. Mater. Eng., Int. J., 1(1), 21-31. https://doi.org/10.12989/cme.2019.1.1.021
  46. Bessaim, A., Houari, M.S.A., Tounsi, A., Mahmoud, S.R. and Adda Bedia, E.A. (2013), "A new higher order shear and normal deformation theory for the static and free vibration analysis of sandwich plates with functionally graded isotropic face sheets", J. Sandwich Struct. Mater., 15(6), 671-703. https://doi.org/10.1177/1099636213498888
  47. Besseghier, A., Houari, M.S.A., Tounsi, A. and Mahmoud, S.R. (2017), "Free vibration analysis of embedded nanosize FG plates using a new nonlocal trigonometric shear deformation theory", Smart Struct. Syst., Int. J., 19(6), 601-614. https://doi.org/10.12989/sss.2017.19.6.601
  48. Bouadi, A., Bousahla, A.A., Houari, M.S.A., Heireche, H. and Tounsi, A. (2018), "A new nonlocal HSDT for analysis of stability of single layer graphene sheet", Adv. Nano Res., Int. J., 6(2), 147-162. https://doi.org/10.12989/anr.2018.6.2.147
  49. Bouafia, K., Kaci, A., Houari, M.S.A., Benzair, A. and Tounsi, A. (2017), "A nonlocal quasi-3D theory for bending and free flexural vibration behaviors of functionally graded nanobeams", Smart Struct. Syst., Int. J., 19(2), 115-126. https://doi.org/10.12989/sss.2017.19.2.115
  50. Bouderba, B., Houari, M.S.A. and Tounsi, A. (2013), "Thermomechanical bending response of FGM thick plates resting on Winkler-Pasternak elastic foundations", Steel Compos. Struct., Int. J., 14(1), 85-104. https://doi.org/10.12989/scs.2013.14.1.085
  51. Bouderba, B., Houari, M.S.A., Tounsi, A. and Mahmoud, S.R. (2016), "Thermal stability of functionally graded sandwich plates using a simple shear deformation theory", Struct. Eng. Mech., Int. J., 58(3), 397-422. https://doi.org/10.12989/sem.2016.58.3.397
  52. Bouhadra, A., Tounsi, A., Bousahla, A.A., Benyoucef, S. and Mahmoud, S.R. (2018), "Improved HSDT accounting for effect of thickness stretching in advanced composite plates", Struct. Eng. Mech., Int. J., 66(1), 61-73. https://doi.org/10.12989/sem.2018.66.1.061
  53. Boukhari, A., Ait Atmane, H., Houari, M.S.A., Tounsi, A., Adda Bedia, E.A. and Mahmoud, S.R. (2016), "An efficient shear deformation theory for wave propagation of functionally graded material plates", Struct. Eng. Mech., Int. J., 57(5), 837-859. https://doi.org/10.12989/sem.2016.57.5.837
  54. Boukhlif, Z., Bouremana, M., Bourada, F., Bousahla, A.A., Bourada, M., Tounsi, A. and Al-Osta, M.A. (2019), "A simple quasi-3D HSDT for the dynamics analysis of FG thick plate on elastic foundation", Steel Compos. Struct., Int. J., 31(5), 503-516. https://doi.org/10.12989/scs.2019.31.5.503
  55. Boulefrakh, L., Hebali, H., Chikh, A., Bousahla, A.A., Tounsi, A. and Mahmoud, S.R. (2019), "The effect of parameters of visco-Pasternak foundation on the bending and vibration properties of a thick FG plate", Geomech. Eng., Int. J., 18(2), 161-178. https://doi.org/10.12989/gae.2019.18.2.161
  56. Bounouara, F., Benrahou, K.H., Belkorissat, I. and Tounsi, A. (2016), "A nonlocal zeroth-order shear deformation theory for free vibration of functionally graded nanoscale plates resting on elastic foundation", Steel Compos. Struct., Int. J., 20(2), 227-249. https://doi.org/10.12989/scs.2016.20.2.227
  57. Bourada, M., Kaci, A., Houari, M.S.A. and Tounsi, A. (2015), "A new simple shear and normal deformations theory for functionally graded beams", Steel Compos. Struct., Int. J., 18(2), 409-423. https://doi.org/10.12989/scs.2015.18.2.409
  58. Bourada, F., Amara, K., Bousahla, A.A., Tounsi, A. and Mahmoud, S.R. (2018), "A novel refined plate theory for stability analysis of hybrid and symmetric S-FGM plates", Struct. Eng. Mech., Int. J., 68(6), 661-675. https://doi.org/10.12989/sem.2018.68.6.661
  59. Bourada, F., Bousahla, A.A., Bourada, M., Azzaz, A., Zinata, A. and Tounsi, A. (2019), "Dynamic investigation of porous functionally graded beam using a sinusoidal shear deformation theory", Wind Struct., Int. J., 28(1), 19-30. https://doi.org/10.12989/was.2019.28.1.019
  60. Bousahla, A.A., Houari, M.S.A., Tounsi, A. and Adda Bedia, E.A. (2014), "A novel higher order shear and normal deformation theory based on neutral surface position for bending analysis of advanced composite plates", Int. J. Computat. Methods, 11(6), 1350082. https://doi.org/10.1142/S0219876213500825
  61. Bousahla, A.A., Benyoucef, S., Tounsi, A. and Mahmoud, S.R. (2016), "On thermal stability of plates with functionally graded coefficient of thermal expansion", Struct. Eng. Mech., Int. J., 60(2), 313-335. https://doi.org/10.12989/sem.2016.60.2.313
  62. Boutaleb, S., Benrahou, K.H., Bakora, A., Algarni, A., Bousahla, A.A., Tounsi, A., Mahmoud, S.R. and Tounsi, A. (2019), "Dynamic analysis of nanosize FG rectangular plates based on simple nonlocal quasi 3D HSDT", Adv. Nano Res., Int. J., 7(3), 189-206. https://doi.org/10.12989/anr.2019.7.3.191
  63. Carter, N.J. and Cross, R.A. (2005), "Mechanics of the kinesin step", Nature, 435, 308-312. https://doi.org/10.1038/nature03528
  64. Chaabane, L.A., Bourada, F., Sekkal, M., Zerouati, S., Zaoui, F.Z., Tounsi, A., Derras, A., Bousahla, A.A. and Tounsi, A. (2019), "Analytical study of bending and free vibration responses of functionally graded beams resting on elastic foundation", Struct. Eng. Mech., Int. J., 71(2), 185-196. https://doi.org/10.12989/sem.2019.71.2.185
  65. Cherif, R.H., Meradjah, M., Zidour, M., Tounsi, A., Belmahi, H. and Bensattalah, T. (2018), "Vibration analysis of nano beam using differential transform method including thermal effect", J. Nano Res., 54, 1-14. https://doi.org/10.4028/www.scientific.net/JNanoR.54.1
  66. Chikh, A., Tounsi, A., Hebali, H. and Mahmoud, S.R. (2017), "Thermal buckling analysis of cross-ply laminated plates using a simplified HSDT", Smart Struct. Syst., Int. J., 19(3), 289-297. https://doi.org/10.12989/sss.2017.19.3.289
  67. Chretien, D. and Wade, R.H. (1991), "New data on the microtubule surface lattice", Biol. Cell., 71, 161-174. https://doi.org/10.1016/0248-4900(91)90062-R
  68. Civalek, O . and Akgoz, B. (2010), "Free vibration analysis of microtubules as cytoskeleton components: nonlocal Euler-Bernoulli beam modeling", Sci. Iran. Trans. B - Mech. Eng., 17, 367-375.
  69. Civalek, O ., Demir, C . and Akgoz, B. (2010), "Free vibration and bending analyses of cantilever microtubules based on nonlocal continuum model", Math. Comput. Appl., 15, 289-298. https://doi.org/10.3390/mca15020289
  70. Daneshmand, F. and Amabili, M. (2012), "Coupled oscillations of a protein microtubule immersed in cytoplasm: an orthotropic elastic shell modeling", J. Biol. Phys., 38, 429-448. https://doi.org/10.1007/s10867-012-9263-y
  71. Daouadji, T.H. (2017), "Analytical and numerical modeling of interfacial stresses in beams bonded with a thin plate", Adv. Computat. Des., Int. J., 2(1), 57-69. https://doi.org/10.12989/acd.2017.2.1.057
  72. Draiche, K., Tounsi, A. and Mahmoud, S.R. (2016), "A refined theory with stretching effect for the flexure analysis of laminated composite plates", Geomech. Eng., Int. J., 11(5), 671-690. https://doi.org/10.12989/gae.2016.11.5.671
  73. Draiche, K., Bousahla, A.A., Tounsi, A., Alwabli, A.S., Tounsi, A. and Mahmoud, S.R. (2019), "Static analysis of laminated reinforced composite plates using a simple first-order shear deformation theory", Comput. Concrete, Int. J., 24(4), 369-378. https://doi.org/10.12989/cac.2019.24.4.369
  74. Draoui, A., Zidour, M., Tounsi, A. and Adim, B. (2019), "Static and dynamic behavior of nanotubes-reinforced sandwich plates using (FSDT)", J. Nano Res., 57, 117-135. https://doi.org/10.4028/www.scientific.net/JNanoR.57.117
  75. El-Haina, F., Bakora, A., Bousahla, A.A., Tounsi, A. and Mahmoud, S.R. (2017), "A simple analytical approach for thermal buckling of thick functionally graded sandwich plates", Struct. Eng. Mech., Int. J., 63(5), 585-595. https://doi.org/10.12989/sem.2017.63.5.585
  76. Elmerabet, A.H., Heireche, H., Tounsi, A. amd Semmah, A. (2017), "Buckling temperature of a single-walled boron nitride nanotubes using a novel nonlocal beam model", Adv. Nano Res., Int. J., 5(1), 1-12. https://doi.org/10.12989/anr.2017.5.1.001
  77. Eltaher, M.A., Khater, M.E., Park, S., Abdel-Rahman, E. and Yavuz, M. (2016), "On the static stability of nonlocal nanobeams using higher-order beam theories", Adv. Nano. Res., Int. J., 4(1), 51-64. https://doi.org/10.12989/anr.2016.4.1.051
  78. Eltaher, M.A., Fouda, N., El-midany, T. and Sadoun, A.M. (2018), "Modified porosity model in analysis of functionally graded porous nanobeams", J. Brazil. Soc. Mech. Sci. Eng., 40(3), 141. https://doi.org/10.1007/s40430-018-1065-0
  79. Eringen, A.C. (1967), "Theory of micropolar plates", Z. Angew Math. Phys., 18, 12-30. https://doi.org/10.1007/BF01593891
  80. Eringen, A.C. (1972), "Nonlocal polar elastic continua", Int. J.Eng. Sci., 10, 1-16.https://doi.org/10.1016/0020-7225(72)90070-5
  81. Eringen, A.C. (1983), "On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves", J. Appl. Phys., 54, 4703-4710. https://doi.org/10.1063/1.332803
  82. Fakhar, A. and Kolahchi, R. (2018), "Dynamic buckling of magnetorheological fluid integrated by visco-piezo-GPL reinforced plates", Int. J. Mech. Sci., 144, 788-799. https://doi.org/10.1016/j.ijmecsci.2018.06.036
  83. Faleh, N.M., Ahmed, R.A. and Fenjan, R.M. (2018), "On vibrations of porous FG nanoshells", Int. J. Eng. Sci, 133, 1-14. https://doi.org/10.1016/j.ijengsci.2018.08.007
  84. Felgner, H., Frank, R. and Schliwa, M. (1996), "Flexural rigidity of microtubules measured with the use of optical tweezers", J. Cell Biol., 109, 509-516.
  85. Fleck, N.A. and Hutchinson, J.W. (1993), "A phenomenological theory for strain gradient effects in plasticity", J. Mech. Phys. Solids, 41, 1825-1857. https://doi.org/10.1016/0022-5096(93)90072-N
  86. Fourn, H., Ait Atmane, H., Bourada, M., Bousahla, A.A., Tounsi, A. and Mahmoud, S.R. (2018), "A novel four variable refined plate theory for wave propagation in functionally graded material plates", Steel Compos. Struct., Int. J., 27(1), 109-122. https://doi.org/10.12989/scs.2018.27.1.109
  87. Fu, Y. and Zhang, J. (2010), "Modeling and analysis of microtubules based on a modified couple stress theory", Physica E, 42, 1741-1745. https://doi.org/10.1016/j.physe.2010.01.033
  88. Gao, Y. and An, L. (2010), "A nonlocal elastic anisotropic shell model for microtubule buckling behaviors in cytoplasm", Physica E, 42, 2406-2415. https://doi.org/10.1016/j.physe.2010.05.022
  89. Gao, Y. and Lei, F.M. (2009), "Small scale effects on the mechanical behaviors of protein microtubules based on the nonlocal elasticity theory", Biochem. Biophys. Res. Commun., 387, 467-471. https://doi.org/10.1016/j.bbrc.2009.07.042
  90. Ghavanloo, E., Daneshmand, F. and Amabili, M. (2010), "Vibration analysis of a single microtubule surrounded by cytoplasm", Physica E, 43, 192-198. https://doi.org/10.1016/j.physe.2010.07.016
  91. Ghayesh, M.H., Amabili, M. and Farokhi, H. (2013), "Nonlinear forced vibrations of a microbeam based on the strain gradient elasticity theory", Int. J. Eng. Sci., 63, 52-60. https://doi.org/10.1016/j.ijengsci.2012.12.001
  92. Gittes, F., Mickey, B., Nettleton, J. and Howard, J. (1993), "Flexural rigidity of microtubules and actin filaments measured from thermal fluctuations in shape", J. Cell Biol., 120, 923-934. https://doi.org/10.1083/jcb.120.4.923
  93. Guven, U. (2014), "Love-Bishop rod solution based on strain gradient elasticity theory", Comptes Rendus Mecanique, 342, 8-16. https://doi.org/10.1016/j.crme.2013.10.011
  94. Hachemi, H., Kaci, A., Houari, M.S.A., Bourada, A., Tounsi, A. and Mahmoud, S.R. (2017), "A new simple three-unknown shear deformation theory for bending analysis of FG plates resting on elastic foundations", Steel Compos. Struct., Int. J., 25(6), 717-726. https://doi.org/10.12989/scs.2017.25.6.717
  95. Hamidi, A., Houari, M.S.A., Mahmoud, S.R. and Tounsi, A. (2015), "A sinusoidal plate theory with 5-unknowns and stretching effect for thermomechanical bending of functionally graded sandwich plates", Steel Compos. Struct., Int. J., 18(1), 235-253. https://doi.org/10.12989/scs.2015.18.1.235
  96. Hebali, H., Tounsi, A., Houari, M.S.A., Bessaim, A. and Adda Bedia, E.A. (2014), "New quasi-3D hyperbolic shear deformation theory for the static and free vibration analysis of functionally graded plates", J. Eng. Mech. (ASCE), 140(2), 374-383. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000665
  97. Heireche, H., Tounsi, A., Benhassaini, H., Benzair, A., Bendahmane, M., Missouri, M. and Mokadem, S. (2010), "Nonlocal elasticity effect on vibration characteristics of protein microtubules", Physica E, 42, 2375-2379. https://doi.org/10.1016/j.physe.2010.05.017
  98. Hellal, H., Bourada, M., Hebali, H., Bourada, F., Tounsi, A., Bousahla, A.A. and Mahmoud, S.R. (2019), "Dynamic and stability analysis of functionally graded material sandwich plates in hygro-thermal environment using a simple higher shear deformation theory", J. Sandw. Struct. Mater. https://doi.org/10.1177/1099636219845841
  99. Houari, M.S.A., Tounsi, A., Bessaim, A. and Mahmoud, S.R. (2016), "A new simple three -unknown sinusoidal shear deformation theory for functionally graded plates", Steel Compos. Struct., Int. J., 22 (2), 257-276. https://doi.org/10.12989/scs.2016.22.2.257
  100. Howard, J. and Hyman, A.A. (2003), "Dynamics and mechanics of the microtubule plus end", Nature, 422, 753-758. https://doi.org/10.1038/nature01600
  101. Hussain, M., Naeem, M.N., Tounsi, A. and Taj, M. (2019), "Nonlocal effect on the vibration of armchair and zigzag SWCNTs with bending rigidity", Adv. Nano Res., Int. J., 7(6), 431-442. https://doi.org/10.12989/anr.2019.7.6.431
  102. Jandaghian, A.A. and Rahmani, O. (2017), "Vibration analysis of FG nanobeams based on third-order shear deformation theory under various boundary conditions", Steel Compos. Struct., Int. J., 25(1), 67-78. https://doi.org/10.12989/scs.2017.25.1.067
  103. Kaci, A., Houari, M.S.A., Bousahla, A.A., Tounsi, A. and Mahmoud, S.R. (2018), "Post-buckling analysis of sheardeformable composite beams using a novel simple two-unknown beam theory", Struct. Eng. Mech., Int. J., 65(5), 621-631. https://doi.org/10.12989/sem.2018.65.5.621
  104. Kadari, B., Bessaim, A., Tounsi, A., Heireche, H., Bousahla, A.A. and Houari, M.S.A. (2018), "Buckling analysis of orthotropic nanoscale plates resting on elastic foundations", J. Nano Res., 55, 42-56. https://doi.org/10.4028/www.scientific.net/JNanoR.55.42
  105. Kahrobaiyan, M.H., Tajalli, S.A., Movahhedy, M.R., Akbari, J. and Ahmadian, M.T. (2011a), "Torsion of strain gradient bars", Int. J. Eng. Sci., 49, 856-866. https://doi.org/10.1016/j.ijengsci.2011.04.008
  106. Kahrobaiyan, M.H., Asghari, M., Rahaeifard, M. and Ahmadian, M.T. (2011b), "A nonlinear strain gradient beam formulation", Int. J. Eng. Sci., 49, 1256-1267. https://doi.org/10.1016/j.ijengsci.2011.01.006
  107. Kahrobaiyan, M.H., Rahaeifard, M., Tajalli, S.A. and Ahmadian, M.T. (2012), "A strain gradient functionally graded Euler-Bernoulli beam formulation", Int. J. Eng. Sci., 52, 65-76. https://doi.org/10.1016/j.ijengsci.2011.11.010
  108. Kahrobaiyan, M.H., Asghari, M. and Ahmadian, M.T. (2013), "Longitudinal behavior of strain gradient bars", Int. J. Eng. Sci., 66, 44-59. https://doi.org/10.1016/j.ijengsci.2013.02.005
  109. Kar, V.R., Mahapatra, T.R. and Panda, S.K. (2017), "Effect of different temperature load on thermal postbuckling behaviour of functionally graded shallow curved shell panels", Compos. Struct., 160, 1236-1247. https://doi.org/10.1016/j.compstruct.2016.10.125
  110. Karami, B., Janghorban, M. and Tounsi, A. (2017), "Effects of triaxial magnetic field on the anisotropic nanoplates", Steel Compos. Struct., Int. J., 25(3), 361-374. https://doi.org/10.12989/scs.2017.25.3.361
  111. Karami, B., Janghorban, M. and Tounsi, A. (2018a), "Galerkin's approach for buckling analysis of functionally graded anisotropic nanoplates/different boundary conditions", Eng. Comput. https://doi.org/10.1007/s00366-018-0664-9
  112. Karami, B., Shahsavari, D. and Janghorban, M. (2018b), "Wave propagation analysis in functionally graded (FG) nanoplates under in-plane magnetic field based on nonlocal strain gradient theory and four variable refined plate theory", Mech. Adv. Mater. Struct., 25(12), 1047-1057. https://doi.org/10.1080/15376494.2017.1323143
  113. Karami, B., Janghorban, M., Shahsavari, D. and Tounsi, A. (2018c), "A size-dependent quasi-3D model for wave dispersion analysis of FG nanoplates", Steel Compos. Struct., Int. J., 28(1), 99-110. https://doi.org/10.12989/scs.2018.28.1.099
  114. Karami, B., Janghorban, M. and Tounsi, A. (2018d), "Nonlocal strain gradient 3D elasticity theory for anisotropic spherical nanoparticles", Steel Compos. Struct., Int. J., 27(2), 201-216. https://doi.org/10.12989/scs.2018.27.2.201
  115. Karami, B., Janghorban, M. and Tounsi, A. (2018e), "Variational approach for wave dispersion in anisotropic doubly-curved nanoshells based on a new nonlocal strain gradient higher order shell theory", Thin-Wall. Struct., 129, 251-264. https://doi.org/10.1016/j.tws.2018.02.025
  116. Karami, B., Janghorban, M. and Tounsi, A. (2019a), "On exact wave propagation analysis of triclinic material using three dimensional bi-Helmholtz gradient plate model", Struct. Eng. Mech., Int. J., 69(5), 487-497. https://doi.org/10.12989/sem.2019.69.5.487
  117. Kasas, S., Kis, A., Riederer, B.M., Forro, L., Dietler, G. and Catsicas, S. (2004), "Mechanical properties of microtubules explored using the finite elements method", Chem. Phys. Chem., 5, 252-257. https://doi.org/10.1002/cphc.200300799
  118. Khetir, H., Bachir Bouiadjra, M., Houari, M.S.A., Tounsi, A. and Mahmoud, S.R. (2017), "A new nonlocal trigonometric shear deformation theory for thermal buckling analysis of embedded nanosize FG plates", Struct. Eng. Mech., Int. J., 64(4), 391-402. https://doi.org/10.12989/sem.2017.64.4.391
  119. Khiloun, M., Bousahla, A.A., Kaci, A., Bessaim, A., Touns, A. and Mahmoud, S.R. (2019), "Analytical modeling of bending and vibration of thick advanced composite plates using a fourvariable quasi 3D HSDT", Eng. Comput., 1-15. https://doi.org/10.1007/s00366-019-00732-1
  120. Kikumoto, M,, Kurachi, M,, Tosa, V, and Tashiro, H. (2006), "Flexural rigidity of individual microtubules measured by a buckling force with optical traps", Biophys. J., 90, 1687-1696. https://doi.org/10.1529/biophysj.104.055483
  121. Kis, A., Kasas, S., Babic, B., Kulik, A.J., Benoit, W., Briggs, G.A.D., Schonenberger, C., Catsicas, S. and Forro, L. (2002), "Nanomechanics of microtubules", Phys. Rev. Lett., 89, 248101. https://doi.org/10.1103/PhysRevLett.89.248101
  122. Koiter, W.T. (1964), "Couple-stresses in the theory of elasticity: I and II", Prec. Roy. Netherlands Acad. Sci. B., 67, 17-44.
  123. Kurachi, M., Hoshi, M. and Tashiro, H. (1995), "Buckling of a single microtubule by optical trapping forces: direct measurement of microtubule rigidity", Cell Motil. Cytoskel., 30, 221-228. https://doi.org/10.1002/cm.970300306
  124. Lal, A., Jagtap, K.R. and Singh, B.N. (2017), "Thermomechanically induced finite element based nonlinear static response of elastically supported functionally graded plate with random system properties", Adv. Computat. Des., Int. J., 2(3), 165-194. https://doi.org/10.12989/acd.2017.2.3.165
  125. Lam, D.C.C., Yang, F., Chong, A.C.M., Wang, J. and Tong, P. (2003), "Experiments and theory in strain gradient elasticity", J. Mech. Phys. Solids., 51, 1477-1508. https://doi.org/10.1016/S0022-5096(03)00053-X
  126. Larbi Chaht, F., Kaci, A., Houari, M.S.A., Tounsi, A., Anwar Beg, O. and Mahmoud, S.R. (2015), "Bending and buckling analyses of functionally graded material (FGM) size-dependent nanoscale beams including the thickness stretching effect", Steel. Compos. Struct., Int. J., 18(2), 425-442. https://doi.org/10.12989/scs.2015.18.2.425
  127. Lei, J., He, Y., Zhang, B., Gan, Z. and Zeng, P. (2013), "Bending and vibration of functionally graded sinusoidal microbeams based on the strain gradient elasticity theory", Int. J. Eng. Sci., 72, 36-52. https://doi.org/10.1016/j.ijengsci.2013.06.012
  128. Li, C., Ru, C.Q. and Mioduchowski, A. (2006), "Lengthdependence of flexural rigidity as a result of anisotropic elastic properties of microtubules", Biochem. Biophys. Res. Commun., 349, 1145-1150. https://doi.org/10.1016/j.bbrc.2006.08.153
  129. Mahi, A., Adda Bedia, E.A. and Tounsi, A. (2015), "A new hyperbolic shear deformation theory for bending and free vibration analysis of isotropic, functionally graded, sandwich and laminated composite plates", Appl. Math. Model., 39, 2489-2508. https://doi.org/10.1016/j.apm.2014.10.045
  130. McFarland, A.W. and Colton, J.S. (2005), "Role of material microstructure in plate stiffness with relevance to microcantilever sensors", J. Micromech. Microeng., 15, 1060-1067. https://doi.org/10.1088/0960-1317/15/5/024
  131. Medani, M., Benahmed, A., Zidour, M., Heireche, H., Tounsi, A., Bousahla, A.A., Tounsi, A. and Mahmoud, S.R. (2019), "Static and dynamic behavior of (FG-CNT) reinforced porous sandwich plate", Steel Compos. Struct., 32(5), 595-610. https://doi.org/10.12989/scs.2019.32.5.595
  132. Meksi, R., Benyoucef, S., Mahmoudi, A., Tounsi, A., Adda Bedia, E.A. and Mahmoud, S.R. (2019), "An analytical solution for bending, buckling and vibration responses of FGM sandwich plates", J. Sandw. Struct. Mater., 21(2), 727-757. https://doi.org/10.1177/1099636217698443
  133. Menasria, A., Bouhadra, A., Tounsi, A., Bousahla, A.A. and Mahmoud, S.R. (2017), "A new and simple HSDT for thermal stability analysis of FG sandwich plates", Steel Compos. Struct., Int. J., 25(2), 157-175. https://doi.org/10.12989/scs.2017.25.2.157
  134. Meziane, M.A.A., Abdelaziz, H.H. and Tounsi, A. (2014), "An efficient and simple refined theory for buckling and free vibration of exponentially graded sandwich plates under various boundary conditions", J. Sandw. Struct. Mater.,16(3), 293-318. https://doi.org/10.1177/1099636214526852
  135. Mindlin, R.D. and Tiersten, H.F. (1962), "Effects of couplestresses in linear elasticity", Arch. Ration. Mech. Anal., 11, 415-448. https://doi.org/10.1007/BF00253946
  136. Mokhtar, Y., Heireche, H., Bousahla, A.A., Houari, M.S.A., Tounsi, A. and Mahmoud, S.R. (2018), "A novel shear deformation theory for buckling analysis of single layer graphene sheet based on nonlocal elasticity theory", Smart Struct. Syst., Int. J., 21(4), 397-405. https://doi.org/10.12989/sss.2018.21.4.397
  137. Mouffoki, A., Adda Bedia, E.A., Houari, M.S.A., Tounsi, A. and Mahmoud, S.R. (2017), "Vibration analysis of nonlocal advanced nanobeams in hygro-thermal environment using a new two-unknown trigonometric shear deformation beam theory", Smart Struct. Syst., Int. J., 20(3), 369-383. https://doi.org/10.12989/sss.2017.20.3.369
  138. Narendar, S., Ravinder, S. and Gopalakrishnan, S. (2012), "Strain gradient torsional vibration analysis of micro/nano rods", Int. J. Nano Dimens., 3, 1-17.
  139. Narwariya, M., Choudhury, A. and Sharma, A.K. (2018), "Harmonic analysis of moderately thick symmetric cross-ply laminated composite plate using FEM", Adv. Computat. Des., Int. J., 3(2), 113-132. https://doi.org/10.12989/acd.2018.3.2.113
  140. Needleman, D.J., Ojeda-Lopez, M.A., Raviv, U., Ewert, K., Jones, J.B., Miller, H.P., Wilson, L. and Safinya, C.R. (2004), "Synchrotron X-ray diffraction study of microtubules buckling and bundling under osmotic stress: a probe of interprotofilament interactions", Phys. Rev. Lett., 93, 198104. https://doi.org/10.1103/PhysRevLett.93.198104
  141. Nogales, E., Whittaker, M., Milligan, R.A. and Downing, K.H. (1999), "High-resolution model of the microtubule", Cell, 96, 79-88. https://doi.org/10.1016/S0092-8674(00)80961-7
  142. Pampaloni, F., Lattanzi, G., Jonas, A., Surrey, T., Frey, E. and Florin, E.L. (2006), "Thermal fluctuations of grafted microtubules provide evidence of a length-dependent persistence length", Proc. Nat. Acad. Sci. USA, 103, 10248-10253. https://doi.org/10.1073/pnas.0603931103
  143. Panjehpour, M., Loh, E.W.K. and Deepak, T.J. (2018), "Structural Insulated Panels: State-of-the-Art", Trends Civil Eng. Architect., 3(1) 336-340. https://doi.org/10.32474/TCEIA.2018.03.000151
  144. Poole, W.J., Ashby, M.F. and Fleck, N.A. (1996), "Micro-hardness of annealed and workhardened copper polycrystals", Scripta Mater., 34, 559-564. https://doi.org/10.1016/1359-6462(95)00524-2
  145. Portet, S., Tuszynski, J.A., Hogue, C.W. and Dixon, J.M. (2005), "Elastic vibrations in seamless microtubules", Eur. Biophys. J., 34, 912-920. https://doi.org/10.1007/s00249-005-0461-4
  146. Rezaiee-Pajand, M., Masoodi, A.R. and Mokhtari, M. (2018), "Static analysis of functionally graded non-prismatic sandwich beams", Adv. Computat. Des., Int. J., 3(2), 165-190. https://doi.org/10.12989/acd.2018.3.2.165
  147. Schliwa, M. and Woehlke, G. (2003), "Molecular motors", Nature, 422, 759-765. https://doi.org/10.1038/nature01601
  148. Scholey, J.M., Mascher, I.B. and Mogilner, A. (2003), "Cell division", Nature, 422, 746-752. https://doi.org/10.1038/nature01599
  149. Sekkal, M., Fahsi, B., Tounsi, A. and Mahmoud, S.R. (2017), "A novel and simple higher order shear deformation theory for stability and vibration of functionally graded sandwich plate", Steel Compos. Struct., Int. J., 25(4), 389-401.https://doi.org/10.12989/scs.2017.25.4.389
  150. Selmi, A. and Bisharat, A. (2018), "Free vibration of functionally graded SWNT reinforced aluminum alloy beam", J. Vibroeng., 20(5), 2151-2164. https://doi.org/10.21595/jve.2018.19445
  151. Shen, H.S. (2010a), "Nonlocal shear deformable shell model for postbuckling of axially compressed microtubules embedded in an elastic medium", Biomech. Model. Mechanobiol., 9, 345-357. https://doi.org/10.1007/s10237-009-0180-3
  152. Shen, H.S. (2010b), "Buckling and postbuckling of radially loaded microtubules by nonlocal shear deformable shell model", J Theor Biol, 264, 386-394. https://doi.org/10.1016/j.jtbi.2010.02.014
  153. Shen, H.S. (2010c), "Nonlocal shear deformable shell model for bending buckling of microtubules embedded in an elastic medium", Phys. Lett. A, 374, 4030-4069. https://doi.org/10.1016/j.physleta.2010.08.006
  154. Shi, Y.J., Guo, W.L. and Ru, CQ. (2008), "Relevance of Timoshenko-beam model to microtubules of low shear modulus", Physica E, 41, 213-219. https://doi.org/10.1016/j.physe.2008.06.025
  155. Tajalli, S.A., Rahaeifard, M., Kahrobaiyan, M.H., Movahhedy, M.R., Akbari, J. and Ahmadian, M.T. (2013), "Mechanical behavior analysis of size-dependent micro-scaled functionally graded Timoshenko beams by strain gradient elasticity theory", Compos. Struct., 102, 72-80. https://doi.org/10.1016/j.compstruct.2013.03.001
  156. Tounsi, A., Heireche, H., Benhassaini, H. and Missouri, M. (2010), "Vibration and length dependent flexural rigidity of protein microtubules using higher order shear deformation theory", J. Theor. Biol., 266, 250-255. https://doi.org/10.1016/j.jtbi.2010.06.037
  157. Tounsi, A., Houari, M.S.A., Benyoucef, S. and Adda Bedia, E.A. (2013), "A refined trigonometric shear deformation theory for thermoelastic bending of functionally graded sandwich plates", Aerosp. Sci. Technol, 24(1), 209-220. https://doi.org/10.1016/j.ast.2011.11.009
  158. Tounsi, A., Ait Atmane, H., Khiloun, M., Sekkal, M., Taleb, O. and Bousahla, A.A. (2019), "On buckling behavior of thick advanced composite sandwich plates", Compos. Mater. Eng., Int. J., 1(1), 1-19. https://doi.org/10.12989/cme.2019.1.1.001
  159. Toupin, R.A. (1964), "Theory of elasticity with couple stresses", Arch. Ration. Mech. Anal., 17, 85-112. https://doi.org/10.1007/BF00253050
  160. Tuszynski, J.A., Luchko, T., Portet, S. and Dixon, J.M. (2005), "Anisotropic elastic properties of microtubules", Eur. Phys. J. E., 17, 29-35. https://doi.org/10.1140/epje/i2004-10102-5
  161. Van-Buren, V., Odde, D.J. and Cassimeris, L. (2002), "Estimates of lateral and longitudinal bond energies within the microtubule lattice", Proc. Nat. Acad. Sci. USA, 99, 6035-6040. https://doi.org/10.1073/pnas.092504999
  162. Vardoulakis, I. and Sulem, J. (1995), Bifurcation Analysis in Geomechanics, Blackie/Chapman & Hall, London, UK.
  163. Venier, P., Maggs, A.C., Carlier, M.F. and Pantaloni, D. (1994), "Analysis of microtubule rigidity using hydrodynamic flow and thermal fluctuations", J. Biol. Chem., 269, 13353-13360. https://doi.org/10.1016/S0021-9258(17)36840-0
  164. Vinckier, A., Dumortier, C., Engelborghs, Y. and Hellemans, L. (1996), "Dynamical and mechanical study of immobilized microtubules with atomic force microscopy", J. Vacuum Sci. Technol. B, 14, 1427-1431. https://doi.org/10.1116/1.589113
  165. Wang, C.Y., Ru, C.Q. and Mioduchowski, A. (2006), "Orthotropic elastic shell model for buckling of microtubules", Phys. Rev. E, 74, 052901. https://doi.org/10.1103/PhysRevE.74.052901
  166. Wang, B., Zhao, J. and Zhou, S. (2010), "A micro scale Timoshenko beam model based on strain gradient elasticity theory", Eur. J. Mech. A/Solids, 29, 591-599. https://doi.org/10.1016/j.euromechsol.2009.12.005
  167. Xiang, P. and Liew, K.M. (2011), "Predicting buckling behavior of microtubules based on an atomistic-continuum model", Int. J. Solids Struct., 48, 1730-1737. https://doi.org/10.1016/j.ijsolstr.2011.02.022
  168. Xiang, P. and Liew, K.M. (2012a), "Free vibration analysis of microtubules based on an atomistic-continuum model", J. Sound Vib., 331, 213-230. https://doi.org/10.1016/j.jsv.2011.08.024
  169. Xiang, P. and Liew, K.M. (2012b), "Dynamic behaviors of long and curved microtubules based on an atomistic-continuum model", Comput. Methods Appl. Mech. Eng., 223, 123-132. https://doi.org/10.1016/j.cma.2012.02.023
  170. Xiang, P. and Liew, K.M. (2013), "A computational framework for transverse compression of microtubules based on a higher-order Cauchy-Born rule", Comput. Methods Appl. Mech. Eng., 254, 14-30. https://doi.org/10.1016/j.cma.2012.10.013
  171. Yahia, S.A., Ait Atmane, H., Houari, M.S.A. and Tounsi, A. (2015), "Wave propagation in functionally graded plates with porosities using various higher-order shear deformation plate theories", Struct. Eng. Mech., Int. J., 53(6), 1143-1165. http://dx.doi.org/10.12989/sem.2015.53.6.1143
  172. Yazid, M., Heireche, H., Tounsi, A., Bousahla, A.A. and Houari, M.S.A. (2018), "A novel nonlocal refined plate theory for stability response of orthotropic single-layer graphene sheet resting on elastic medium", Smart Struct. Syst. Int. J., 21(1), 15-25. https://doi.org/10.12989/sss.2018.21.1.015
  173. Yeghnem, R., Guerroudj, H.Z., Amar, L.H.H., Meftah, S.A., Benyoucef, S., Tounsi, A. and Adda Bedia, E.A. (2017), "Numerical modeling of the aging effects of RC shear walls strengthened by CFRP plates: A comparison of results from different "code type" models", Comput. Concrete, Int. J., 19(5), 579-588. https://doi.org/10.12989/cac.2017.19.5.579
  174. Youcef, D.O., Kaci, A., Benzair, A., Bousahla, A.A. and Tounsi, A. (2018), "Dynamic analysis of nanoscale beams including surface stress effects", Smart Struct. Syst., Int. J., 21(1), 65-74. https://doi.org/10.12989/sss.2018.21.1.065
  175. Younsi, A., Tounsi, A, Zaoui, F.Z., Bousahla, A.A. and Mahmoud, S.R. (2018), "Novel quasi-3D and 2D shear deformation theories for bending and free vibration analysis of FGM plates", Geomech. Eng., Int. J., 14(6), 519-532. https://doi.org/10.12989/gae.2018.14.6.519
  176. Zaoui, F.Z., Ouinas, D. and Tounsi, A. (2019), "New 2D and quasi-3D shear deformation theories for free vibration of functionally graded plates on elastic foundations", Compos. Part B, 159, 231-247. https://doi.org/10.1016/j.compositesb.2018.09.051
  177. Zarga, D., Tounsi, A., Bousahla, A.A., Bourada, F. and Mahmoud, S.R. (2019), "Thermomechanical bending study for functionally graded sandwich plates using a simple quasi-3D shear deformation theory", Steel Compos. Struct., Int. J., 32(3), 389-410. https://doi.org/10.12989/scs.2019.32.3.389
  178. Zemri, A., Houari, M.S.A., Bousahla, A.A. and Tounsi, A. (2015), "A mechanical response of functionally graded nanoscale beam: an assessment of a refined nonlocal shear deformation theory beam theory", Struct. Eng. Mech., Int. J., 54(4), 693-710. https://doi.org/10.12989/sem.2015.54.4.693
  179. Zeverdejani, M.K. and Beni, Y.T. (2013), "The nano scale vibration of protein microtubules based on modified strain gradient theory", Curr. Appl. Phys., 13, 1566-1576. https://doi.org/10.1016/j.cap.2013.05.019
  180. Zhao, J., Zhou, S., Wang, B. and Wang, X. (2012), "Nonlinear microbeam model based on strain gradient theory", Appl. Math. Model., 36, 2674-2686. https://doi.org/10.1016/j.cap.2013.05.019
  181. Zidi, M., Tounsi, A., Houari, M.S.A., Adda Bedia, E.A. and Anwar Beg, O. (2014), "Bending analysis of FGM plates under hygrothermo-mechanical loading using a four variable refined plate theory", Aerosp. Sci. Technol., 34, 24-34. https://doi.org/10.1016/j.ast.2014.02.001
  182. Zidi, M., Houari, M.S.A., Tounsi, A., Bessaim, A. and Mahmoud, S.R. (2017), "A novel simple two-unknown hyperbolic shear deformation theory for functionally graded beams", Struct. Eng. Mech., Int. J., 64(2), 145-153. https://doi.org/10.12989/sem.2017.64.2.145
  183. Zine, A., Tounsi, A., Draiche, K., Sekkal, M. and Mahmoud, S.R. (2018), "A novel higher-order shear deformation theory for bending and free vibration analysis of isotropic and multilayered plates and shells", Steel Compos. Struct., Int. J., 26(2), 125-137. https://doi.org/10.12989/scs.2018.26.2.125

Cited by

  1. Flow of casson nanofluid along permeable exponentially stretching cylinder: Variation of mass concentration profile vol.38, pp.1, 2019, https://doi.org/10.12989/scs.2021.38.1.033
  2. Monitoring and control of multiple fraction laws with ring based composite structure vol.10, pp.2, 2021, https://doi.org/10.12989/anr.2021.10.2.129
  3. Flow of MHD Powell-Eyring nanofluid: Heat absorption and Cattaneo-Christov heat flux model vol.10, pp.3, 2019, https://doi.org/10.12989/anr.2021.10.3.221
  4. Analytical solution for analyzing initial curvature effect on vibrational behavior of PM beams integrated with FGP layers based on trigonometric theories vol.10, pp.3, 2019, https://doi.org/10.12989/anr.2021.10.3.235
  5. Effect of suction on flow of dusty fluid along exponentially stretching cylinder vol.10, pp.3, 2019, https://doi.org/10.12989/anr.2021.10.3.263
  6. The effects of ring and fraction laws: Vibration of rotating isotropic cylindrical shell vol.11, pp.1, 2021, https://doi.org/10.12989/anr.2021.11.1.019
  7. Propagation of waves with nonlocal effects for vibration response of armchair double-walled CNTs vol.11, pp.2, 2019, https://doi.org/10.12989/anr.2021.11.2.183
  8. An investigation of mechanical properties of kidney tissues by using mechanical bidomain model vol.11, pp.2, 2019, https://doi.org/10.12989/anr.2021.11.2.193
  9. Mathematical approach for the effect of the rotation, the magnetic field and the initial stress in the non-homogeneous an elastic hollow cylinder vol.79, pp.5, 2019, https://doi.org/10.12989/sem.2021.79.5.593