• Title/Summary/Keyword: bending deformation

Search Result 1,185, Processing Time 0.021 seconds

Welding deformation analysis based on improved equivalent strain method to cover external constraint during cooling stage

  • Kim, Tae-Jun;Jang, Beom-Seon;Kang, Sung-Wook
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.7 no.5
    • /
    • pp.805-816
    • /
    • 2015
  • In the present study, external restraints imposed normal to the plate during the cooling stage were determined to be effective for reduction of the angular distortion of butt-welded or fillet-welded plate. A welding analysis model under external force during the cooling stage was idealized as a prismatic member subjected to pure bending. The external restraint was represented by vertical force on both sides of the work piece and bending stress forms in the transverse direction. The additional bending stress distribution across the plate thickness was reflected in the improved inherent strain model, and a set of inherent strain charts with different levels of bending stress were newly calculated. From an elastic linear FE analysis using the inherent strain values taken from the chart and comparing them with those from a 3D thermal elasto-plastic FE analysis, welding deformation can be calculated.

The Effect of Deformation Stress-strain and Temperature on the $I_c$ Degradation of Bi-2223/Ag Tapes

  • Ha, Hong-Soo;Kim, Sang-Cheol;Ha, Dong-Woo;Oh, Sang-Soo;Joo, Jin-Ho
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.1251-1252
    • /
    • 2006
  • In order to investigate 95% retained critical current of Bi-2223/Ag tapes under various stress-strain conditions, load cell attached tension and bending apparatus was used. The critical current of stress-strained tape was degraded below 95% retained critical current when tension and bending was simultaneously applied together. But only one of this tension or bending did not degrade the tape below 95% retained critical current. Deformation temperature was important to maintain the 95% retained Ic of Bi-2223/Ag tapes after bending or tension deformation because mechanical strength of tapes can be changed drastically between room temperature and 77 K.

  • PDF

Effect of Transverse Shear Deformation in Thin Elastic Ice Plates

  • 최동호
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1997.04a
    • /
    • pp.45-52
    • /
    • 1997
  • The elastic deflection of thin ice sheets due In bending and shear deformation is considered. The in-plane Young's modulus and the transverse shear modulus are calculated by least squres fit of transverse plate deflection data. Results show that thin ice plates behave predominantly in shear. Previously, the Young's moduli were calaulated based on bending theory alone. The Young's moduli of thin model ice sheets, estimated using the bending and shear theory, are more than an order of magnitude greater than calculated previously, and hence are more realistic. Further, the previous ambiguity in the Young's modulus, arising from fitting the data at various distances from the point of loading, is removed by considering shear and bending deformation.

  • PDF

A refined nonlocal hyperbolic shear deformation beam model for bending and dynamic analysis of nanoscale beams

  • Bensaid, Ismail
    • Advances in nano research
    • /
    • v.5 no.2
    • /
    • pp.113-126
    • /
    • 2017
  • This paper proposes a new nonlocal higher-order hyperbolic shear deformation beam theory (HSBT) for the static bending and vibration of nanoscale-beams. Eringen's nonlocal elasticity theory is incorporated, in order to capture small size effects. In the present model, the transverse shear stresses account for a hyperbolic distribution and satisfy the free-traction boundary conditions on the upper and bottom surfaces of the nanobeams without using shear correction factor. Employing Hamilton's principle, the nonlocal equations of motion are derived. The governing equations are solved analytically for the edges of the beam are simply supported, and the obtained results are compared, as possible, with the available solutions found in the literature. Furthermore, the influences of nonlocal coefficient, slenderness ratio on the static bending and dynamic responses of the nanobeam are examined.

MCST bending formulation of a cylindrical micro-shell based on TSDT

  • Mohammad Arefi
    • Earthquakes and Structures
    • /
    • v.26 no.4
    • /
    • pp.299-309
    • /
    • 2024
  • The present paper develops application of third-order shear deformation theory (TSDT) and modified couple stress theory (MCST) to size-dependent bending analysis of a functionally graded cylindrical micro-shell. The radial and axial displacement components are described based on TSDT for more accurate analysis. The effect of small scales is accounted based on MCST. The principle of virtual work is used for derivation of bending governing equations. The solution is presented for a simply-supported boundary condition to account the influence of various important parameters such as micro length scale parameter, in-homogeneous index and some dimensionless geometric parameters such as length to radius and length to thickness ratios on the bending results. A comparative analysis is presented to examine the effect of order of employed shear deformation theory on the axial and radial displacements.

A Modified Two-Parameter Solution for Crack-Tip Field in Bending Dominated Specimens

  • Jang Seok-Ki;Zhu Xian Kui
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.30 no.4
    • /
    • pp.494-504
    • /
    • 2006
  • It is well known that the two-parameter $J-A_2$ solution can well characterize the crack-tip fields and quantify the crack-tip constraint for different flawed geometries in variety of loading conditions. However, this solution fails to do so for bending dominated specimens or geometries at large deformation because of the influence of significant global bending stress on the crack-tip field. To solve this issue, a modified $J-A_2$ solution is developed in this paper by introducing an additional term to address the global bending influence. Using the $J_2$ flow theory of plasticity and within the small-strain framework detailed finite element analyses are carried out for the single edge notched bend (SENB) specimen with a deep crack in A533B steel at different deformation levels ranging from small-scale Yielding to large-scale Yielding conditions. The numerical results of the crack-tip stress field are then compared with those determined from the $J-A_2$ solution and from the modified $J-A_2$ solution at the same level of applied loading Results indicate that the modified $J-A_2$ solution largely improves the $J-A_2$ solution, and match very well with the numerical results in the region of interest at all deformation levels. Therefore, the proposed solution can effectively describe the crack-tip field and the constraint for bending dominated specimens or geometries.

Comparison of various refined nonlocal beam theories for bending, vibration and buckling analysis of nanobeams

  • Berrabah, H.M.;Tounsi, Abdelouahed;Semmah, Abdelwahed;Adda Bedia, E.A.
    • Structural Engineering and Mechanics
    • /
    • v.48 no.3
    • /
    • pp.351-365
    • /
    • 2013
  • In this paper, unified nonlocal shear deformation theory is proposed to study bending, buckling and free vibration of nanobeams. This theory is based on the assumption that the in-plane and transverse displacements consist of bending and shear components in which the bending components do not contribute toward shear forces and, likewise, the shear components do not contribute toward bending moments. In addition, this present model is capable of capturing both small scale effect and transverse shear deformation effects of nanobeams, and does not require shear correction factors. The equations of motion are derived from Hamilton's principle. Analytical solutions for the deflection, buckling load, and natural frequency are presented for a simply supported nanobeam, and the obtained results are compared with those predicted by the nonlocal Timoshenko beam theory and Reddy beam theories.

GEOMETRY ON EXOTIC HYPERBOLIC SPACES

  • Kim, In-Kang
    • Journal of the Korean Mathematical Society
    • /
    • v.36 no.3
    • /
    • pp.621-631
    • /
    • 1999
  • In this paper we briefly describe the geometry of the Cayley hyperbolic plane and we show that every uniform lattice in quaternionic space cannot be deformed in the Cayley hyperbolic 2-plane. We also describe the nongeometric bending deformation by developing the theory of the Cartan angular invariant for quaternionic hyperbolic space.

  • PDF

Analytic Factor Effects Analysis of Bending Process of Double Pipe for Tube-Hydroforming using Experimental Design (실험계획법을 이용한 튜브 하이드로 포밍용 이중관 벤딩 공정의 해석적 요인 효과 분석)

  • Shim, D.S.;Jung, C.G.;Seong, D.Y.;Yang, D.Y.;Park, S.H.;Kim, K.H.;Choi, H.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.05a
    • /
    • pp.310-313
    • /
    • 2007
  • This paper covers finite element simulations to evaluate the bending limit of double pipe for tube-hydroforming. The tube-hydroforming process starts with a straight precut tube. The tube is often prebent in a rotary draw bending machine to fit the hydroforming tool. During the bending the tube undergoes significant deformation. So forming defects such as wrinkling, thinning and flattening are generated in the tube. Consequently we analyzed the effect of process parameters in rotary draw bending process and searched the optimized combination of process parameters to minimize the forming defects using orthogonal arrays. The characteristic to evaluate the effects of the process parameters is the bending angle which wrinkling is generated, we define the bending angle at that time as bending limit. Of many process parameters, the process parameters of the bending process such as gab between inner and outer tube, boosting force, dimensions of mandrel were analyzed. And we observed the deformation modes of bent double pipe at specific bending angle in each parameter combination.

  • PDF

A novel shear and normal deformation theory for hygrothermal bending response of FGM sandwich plates on Pasternak elastic foundation

  • Abazid, Mohammad Alakel;Alotebi, Muneerah S.;Sobhy, Mohammed
    • Structural Engineering and Mechanics
    • /
    • v.67 no.3
    • /
    • pp.219-232
    • /
    • 2018
  • This paper deals with the static bending of various types of FGM sandwich plates resting on two-parameter elastic foundations in hygrothermal environment. The elastic foundation is modeled as Pasternak's type, which can be either isotropic or orthotropic and as a special case, it converges to Winkler's foundation if the shear layer is neglected. The present FGM sandwich plate is assumed to be made of a fully ceramic core layer sandwiched by metal/ceramic FGM coats. The governing equations are derived from principle of virtual displacements based on a shear and normal deformations plate theory. The present theory takes into account both shear and normal strains effects, thus it predicts results more accurate than the shear deformation plate theories. The results obtained by the shear and normal deformation theory are compared with those available in the literature and also with those obtained by other shear deformation theories. It is concluded that the present results are slightly deviated from other results because the normal deformation effect is taken into account. Numerical results are presented to show the effects of the different parameters, such as side-to-thickness ratio, foundation parameters, aspect ratio, temperature, moisture, power law index and core thickness on the stresses and displacements of the FG sandwich plates.