Effect of Transverse Shear Deformation in Thin Elastic Ice Plates
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ABSTRACT

The elastic deflection of thin ice sheets due to bending and shear deformation is
considered. The in-plane Young’s modulus and the transverse shear modulus are
calculated by least squres fit of transverse plate deflection data. Results show that
thin ice plates behave predominantly in shear. Previously, the Young’s moduli were
calculated based on bending theory alone. The Young’s moduli of thin model ice
sheets, estimated using the bending and shear theory, are more than an order of
magnitude greater than calculated previously, and hence are more realistic. Further,
the previous ambiguity in the Young’'s modulus, arising from fitting the data at
various distances from the point of loading, is removed by considering shear and
bending deformation.

1. INTRODUCTION

Ice plates loaded by static loads but for short duration exhibit elastic behavior,
Previously, ice plates were assumed to deform either in bending or in shear only.
Both assumptions are based on ice plate deflection observations™™, Based on these
data, Kerr™ suggested that ice plates close to their melting temperature exhibit shear
behavior, while colder plates deform predominantly in bending. These two behaviors

result in different governing differential equations and contain different elastic moduli.

. An in situ method for determining the average elastic moduli of a floating ice
plate first requires the measurement of deflections due to a prescribed transverse
load. The average elastic moduli are then calculated by fitting the load-deflection
data with analytical deflection solutions of an elastic plate resting on an elastic
foundation. If the plate is assumed to deform in bending, then an average in-—plane
Young’'s modulus is calculated. An average transverse shear modulus is obtained if
the solution to the shear equation is used. The Young’s modulus™ ™ ang the
transverse modulus™® of floating ice plates have been calculated in this way.

Timco™ expressed two important concerns, commenting on the Young’s modulus

calculated for thin floating model urea ice sheets using the method described above.
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Namely: (i) the Young’s modulus can be more than an order of magnitude smaller
than 1.3GPa - a lower limit for the dynamic Young’s modulus he postulates; and (ii)
the Young's modulus from the deflection data far away from the loading is higher
than the modulus obtained by fitting deflections at the loading. Recently, Elvin™
showed that theoretically the homogenized transverse shear modulus can increase
significantly not only with temperature, but with the thickness of the ice plate as
well. The increase in the shear modulus is believed to be due to two factors: (i)
grain boundary deformation, and (ii) grain coarsening typically observed through the
thickness of the plate. The variation in the shear modulus implies that thin ice plates
are more susceptible to shear deformation than thick plates since they have only a
few grains through their thickness.

The aim of this paper is to account for both bending and shear deformation
effects when calculating the elastic moduli of ice plates. Attention is restricted to
thin ice plates. The organization of this paper is as follows. The governing
differential equations for calculating the elastic moduli of floating bending plates and
floating shear plates are presented in Section 2. The solution of a point load is also
given’ in this section. The governing differential equation and the solution of a
floating plate deforming due to bending and shear is presented in Section 3. The
method of obtaining both the Young’s modulus and transverse shear modulus using
least squres fit is described in Section 4. The two elastic moduli are then obtained
for a simply supported ice plate in Section 5.

2. DEFORMATION OF A FLOATING ICE PLATE

A floating ice plate responding to short duration transverse loads has been
modeled as an elastic plate resting on an elastic foundation, as shown in Figure 1.
The ‘elastic foundation models buoyancy, provided the deflections are small. Two
independent elastic plate behaviors have been considered; namely the plate was
assumed to deform either in bending or in shear. This section presents the governing
differential equations associated with these two assumed behaviors and discusses the
resulting solutions.

FLOATING ICE PLATE
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Figure 1: Schematic of a floating ice plate



2.1 Deformation due to bending stresses

" The deéflected shape of a loaded ice sheet was measured’. This data follows the
deflection curve predicted by the theoretical Kirchhoff bending plate assumption.
Since then the classical Kirchhoff bending plate theory has been applied extensively
to the deformation of floating ice sheets of various thickness™™® For an isotropic
material the governing differential equation[m] of a bending plate resting on an elastic
foundation is

DViw+ xw=q 6))
where  is the transverse (or vertical) deflection. V* is the biharmonic operator, q
is the transverse distributed load, and x is the foundation stiffness. For the ice plate
the foundation stiffness is due to buoyancy and hence x is equal to the specific
weight of water. The flexural rigidity, D, is given by

Ef}
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where E is the average in—plane Young’s modulus, ¢, is the ice plate thickness, and

D= (2)

v is the in—plane Poisson ratio.

Next consider the example of a floating bending plate subject to a point load, P
at.r=0. The boundary conditions on Eq. (1) are

dw
w="~=M=@0=10 at y= o©
dr o 3
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where @ is the shear force/unit length and M is the bending moment/unit length.
The solution to Eq. (1) with the boundary conditions in Eq. (3) is given by"”

w(r) = —22';2 Kei,,(jr) 4

where Kei(x) = Im(Kixe' ”*)) and K, is the modified Bessel function of the second
kind of order 0. The characteristic length A is defined as

A= “@ (5)

2.2. Deformation due to shear stresses

The assumtion that ice plates deflect predominantly in shear with negligible
bending deformation implies that the transverse shear strain 7,; is

_ dw
772 - a’r (6)
The equilibrium condition for the shear plate is
#‘;(Qr) = —xwr+ gr (7N
Where Q is the shear force per unit circumferential length and is defined as
h .
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where r,, is the transverse shear stress. If the elastic constitutive law rz,=Gr7,,

where G is the average transverse shear modulus of the plate, is used in Eg. (8),
with the assumption of Eq. (6), and the result is substituted into Eq. (7), then the
governing differential equation for a shear plate on an elastic foundation is obtained
as

dw | 1 dw xw _ _g 2 _
R +t5a t Gt, = G, or GHVw+ xw= 9

The example of a point load, P at r = 0 acting on a shear plate is considered.
This problem has the same boundary conditions given in Eq. (3), except for the
specification on M. The solution of Eq. (9) gives

w(r) = ‘én_f;‘t; Ko( \/—:é‘-—;r) (10)

Note that Eq. (10) is non-linear in G. Using an appropriate shear modulus G,
Shmatkov'? showed that Eq. (10) fits the measured deflected shape of a floating ice
plate close to the melting temperature.

3. DEFORMATION DUE TO BENDING AND SHEAR STRESSES

The experimental evidence suggestes that ice plates have two regimes of short
duration deformation. At temperatures close to the melting point the ice plate
deforms in shear; at lower remperatures, the plate behaves predominantly in bending.
Besides this thermal influence on the ice plate, the simulations conducted in Elvin™
also indicate that the transverse shear modulus can increase with plate thickness. It
is postulated that ice plates in between limiting conditions deflect due to bending and
due to shear.

Plates that exhibit both bending and shear deformations are usually referred to
as thick plates. Reissner’'s plate theory can be used to describe thick plate behavior.
The governing differential equation of Reissner’s thick plates on elastic foundations
is '

Dviw + %ﬁ—vz(q — xw) + xw = q ayn

In Eq. (11), the shear deformation is not due to the thickness of the ice plate as in
the standard Reissner plate theory, but due to the reduced transverse shear modulus,
G. This reduction in G is believed to be due to grain boundary deformation and due
to grain coarsening[gl.
Considering once again a floating ice plate subject to a point load, P at r = 0,
the boundary conditions on Eq. (11) are
w=¢=M =1 at y= 00

¢ =0 at r=| (12)
Q = tin ()



where ¢ is the rotation of a line initially normal to the neutral surface and is given
by

g=u _ —g; (13)
Defining two parameters, ¢ and 8:
cos(a) = ég; 14)
£ = §27‘t,, | xay L
the solution™ to Eq. (11) with the boundary conditions in Eq. (12) is
<y |
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Note that the solution of a shear and bending plate is not a simple superposition of
the solutions from a bending plate(Eq. (4)) and a shear plate(Eq. (10)). This is due
to the shear and bending plate resting on an elastic foundation being structurally
indeterminate.

When the transverse shear modulus is high, ie. (Gt)?> Dx, expected in thicker
plates at lower temperatures, the solution in Eq. (15) tends to the bending plate
solution, Eq. (4). At the other limit when (Gt,)?< Dx, ie. when G is very low, Eq.
(15) tends to the shear plate solution, Eq. (10).

4. FITTING ELASTIC MODULI TO MEASURED TRANSVERSE DATA

The static elastic moduli of floating ice plates have been determined from
deflection measurements due to applied transverse loads. Here the ice plate is
assumed to deform both in shear and in bending. The in-plane moduli £ and the
transverse moduli G of the plate are chosen so that the solution to Eq. (11) best fits
the measured load-deflection data. The optimum E, G pair is chosen by the method
of least squres. The sum of the squre of the error, ¢?, between the analytical

deﬂected‘shape, w(7), given by the solution of Eq. (11), and the measured deflection

at distance 7, (7)), is set up:
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- g( w(r) — w(r))? (16)
whére- the summation is carried over the N measured points. The error is minimized
by requiring the error to be stationary with respect to E and G
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Eq. (17) results in two non-linear simultaneous equations in E and G, and these
equations are solved by Newton-Raphson iteration.

5. ELASTIG MODULI OF A THIN ICE PLATE - RESULTS
AND DISCUSSION

5.1 Simply supported circular plate loaded by a ring load

The calculation of the Young’s modulus and the transverse shear modulus
requires deflection measurements at several points on the ice sheet at different
distances from the load. Tinawi and Gagnon™ tested thin circular plates of columnar
grained S2 sea ice resting only on a ring support (no elastic foundation, x=0) and
loaded by a ring load. The solution™ of a plate deforming in bending and in shear,
simply supported at r=L/2 and subject to a ring load (r=b/2) of total magnitude P is

o Bl Sl (4 B 2R
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Note that these equations are linear in 1/F and 1/G. Hence the best fit of the data is
obtained by linear least squares. The moduli are calculated by substituting Eq. (18)
into Eq. (16) and minimizing the error with Eq. (17). A Poisson ratio of 1=0.33 is
assumed.

The results for two plates at -5°C and -10°C are summarized in Table 1. The
corresponding best fit deflected shapes together with the data of Tinawi and
B are plotted in Fig. 2. From Table 1 and Fig. 2 it can be seen that as the
temperature drops, the average Young’s modulus of the plate remains approximately
constant (falling only by 9%) but the shear modulus increases 3.6 times. The
increase in G is expected to be due to the stiffening of the grain boundary. The
contribution of shear deformation to the overall deformation falls from 90% to 65%
as the temperature decreases from -5°C to -10°C.

Gagnon

Table 1: Elastic moduli fit to the data of Tinawi and Gagnon®

IE o)) I P (N) I tn (mm) 1 E (GPa)J G (MPa) | Coeff. of Correlation
-5 4577 107 3.9 4.6 0.976

-10 5239 98 3.56 16.6 0.989
—-50—
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Figure 2: Fit of thin ice plate deflection data of Tinawi and Gagnonm at (a) -5°C;
(b) -10°C. The bending and shear contributions are shown.

Figure 2 shows that the bending and shear deformation curves fit the data well
and the coefficient of correlation are high. For comparison, the data is also fitted by
assuming only bending and only shear deformations, as shown in Fig. 3. The
resulting moduli are: at T=-5°C, E=0.563GPa, G=4MPa; at T=-10°C, E=1.58GPa,
G=9.6MPFa. Notice that now both E and G are temperature dependent. The Young’s
moduli are low. Further, the bending only deformation curves do not resemble the
shape of the data. Hence these plates cannot be modeled by bending plates.
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Figure 3: Best fit of deflection data of Tinawi and Gagnon™ by (i) bending and
shear medel; (i) bending only model; and (iii) shear only model,
at (a) -5°C; (b) -10°C.

6. CONCLUSION

This paper examine the effect of including both shear and bending deformations
in the behavior of thin elastic ice plates. The in-plane Young's modulus, E, and the



transverse shear modulus, G, are obtained by fitting an analytical expression for the
deflection to experimental data. Results show that thin ice plates deform
predominantly in shear, even at temperature lower than melting point. The work
presented here shows the importance of accounting for both the bending and shear
deformations. The behavior of thin model ice sheets in bending and in shear provides
an answer to two concerns raised by Timco. Namely: (i) why the in—plane
Young'’'s modulus of thin model ice sheets is so low? and (ii) why a higher Young's
modulus is obtained when fitting deflection data points further away from the
loading? To emphasize the point: previously, the Young's modulus was calculated
assuming only bending behavior while the model ice plates deform predominantly in
shear.
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