• 제목/요약/키워드: bending deformation

검색결과 1,185건 처리시간 0.023초

레벨링 공정 해석에 의한 교정 조건이 열연 고장도 강판의 잔류음력에 미치는 영향 연구 (Effect of the Leveling Conditions on Residual Stress Evolution of Hot Rolled High Strength Steels by Deformation Analysis of Leveling Process)

  • 박기철
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2009년도 춘계학술대회 논문집
    • /
    • pp.326-329
    • /
    • 2009
  • In order to analyze the effect of leveling conditions on residual stress evolution of hot rolled high strength steels, a numerical algorithm was developed. It was able to implement the effect of plastic fraction (intermesh) in leveling, line tension, work roll bending, and initial residual stress and curl distribution. The effect of work roll bending on residual stress and curl were studied by using the developed program. The validity of simulated results was verified from comparison with the experimentally measured residual stress and curl in a sheet.

  • PDF

점진적 롤 성형공정을 이용한 이중곡률의 금속판재 제작 및 정밀성형을 위한 형상 예측 (Manufacture of Doubly Curved Sheet Metals Using the Incremental Roll Forming Process and Prediction of Formed Shapes for Precision Forming)

  • 윤석준;양동열
    • 한국정밀공학회지
    • /
    • 제21권9호
    • /
    • pp.95-102
    • /
    • 2004
  • A flexible incremental roll forming process has been developed by adopting the advantages of the incremental forming process and the roll forming process: i.e., inherent flexibility of the incremental forming process and continuous bending deformation of the roll forming process. It has an adjustable roll set as a forming tool composed of one upper center roll and two pairs of lower support rolls, which plays a key role during forming process. Through the experiments based on the various combinations of process parameters, it is shown that the incremental roll forming process is so effective as to manufacture various doubly curved sheet metals including concave-convex combination shapes in which there exists a line of inflection. The proposed relationship of the experimental parameters and the radius of curvature of the formed sheet boundary is found to be useful in prediction and control of the final shape.

A refined functional and mixed formulation to static analyses of fgm beams

  • Madenci, Emrah
    • Structural Engineering and Mechanics
    • /
    • 제69권4호
    • /
    • pp.427-437
    • /
    • 2019
  • In this study, an alternative solution procedure presented by using variational methods for analysis of shear deformable functionally graded material (FGM) beams with mixed formulation. By using the advantages of $G{\hat{a}}teaux$ differential approaches, a refined complex general functional and boundary conditions which comprises seven independent variables such as displacement, rotation, bending moment and higher-order bending moment, shear force and higher-order shear force, is derived for general thick-thin FGM beams via shear deformation beam theories. The mixed-finite element method (FEM) is employed to obtain a beam element which have a 2-nodes and total fourteen degrees-of-freedoms. A computer program is written to execute the analyses for the present study. The numerical results of analyses obtained for different boundary conditions are presented and compared with results available in the literature.

Robust quasi 3D computational model for mechanical response of FG thick sandwich plate

  • Achouri, Fatima;Benyoucef, Samir;Bourada, Fouad;Bouiadjra, Rabbab Bachir;Tounsi, Abdelouahed
    • Structural Engineering and Mechanics
    • /
    • 제70권5호
    • /
    • pp.571-589
    • /
    • 2019
  • This paper aims to develop a quasi-3D shear deformation theory for the study of bending, buckling and free vibration responses of functionally graded (FG) sandwich thick plates. For that, in the present theory, both the components of normal deformation and shear strain are included. The displacement field of the proposed model contains undetermined integral terms and involves only four unknown functions with including stretching effect. Using Navier's technique the solution of the problem is derived for simply supported sandwich plate. Numerical results have been reported, and compared with those available in the open literature were excellent agreement was observed. Finally, a detailed parametric study is presented to demonstrate the effect of the different parameters on the flexural responses, free vibration and buckling of a simply supported sandwich plates.

Static analysis of simply supported porous sandwich plates

  • Taskin, Vedat;Demirhan, Pinar Aydan
    • Structural Engineering and Mechanics
    • /
    • 제77권4호
    • /
    • pp.549-557
    • /
    • 2021
  • In this study, it is aimed to analyze the bending of porous sandwich plates using the four-variable shear deformation theory. The core of the sandwich plate is assumed to be functionally graded, and face sheets are assumed to be isotropic. The pore distribution of the sandwich plate is considered even and uneven type of porosity distribution. Displacement fields are defined with four variable shear deformation theory. Equilibrium equations of porous sandwich plates are derived from virtual displacement principle. An analytical solution is obtained by Navier's approach. Results are presented for uniformly and sinusoidally distributed loaded porous sandwich plates. Face sheet -core thickness ratio, porosity distribution, amount of porosity is investigated.

Aeroelastic deformation and load reduction of bending-torsion coupled wind turbine blades

  • Shaojun, Du;Jingwei, Zhou;Fengming, Li
    • Wind and Structures
    • /
    • 제35권5호
    • /
    • pp.353-368
    • /
    • 2022
  • Wind turbine blades are adjusted in real-time according to the wind conditions and blade deformations to improve power generation efficiency. It is necessary to predict and reduce the aeroelastic deformations of wind turbine blades. In this paper, the equivalent model of the blade is established by the finite element method (FEM), and the aerodynamic load of the blade is evaluated based on the blade element momentum (BEM) theory. The aeroelastic coupling model is established, in which the bending-torsion coupling effect of the blade is taken into account. The steady and dynamic aeroelastic deformations are calculated. The influences of the blade section's shear centre position and the blade's sweepback design on the deformations are analyzed. The novel approaches of reducing the twist angle of the blade by changing the shear centre position and sweepback of the blade are presented and proven to be feasible.

휨거동을 받는 균열판의 전단변형을 고려한 p-Version 유한요소모델 (p-Version Finite Element Model of Cracked Plates Including Shear Deformation under Flexural Behavior)

  • Lee, C.G.;K.S.Woo;Shin, Y.S.
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1993년도 가을 학술발표회논문집
    • /
    • pp.16-23
    • /
    • 1993
  • The new p-version crack model is proposed to estimate the bending stress intensity factors of the thick cracked plate under flexure. The proposed model is based on high order theory and $C^{\circ}$-plate element including shear deformation. The displacements fields are defined by integrals of Legerdre polynomials which can be classified into three groups such as basic mode, side mode and internal mode. The computer implementation allows arbitrary variations of p-level up to a maximum value of 10. The bending stress intensity factors are computed by virtual crack extention approach. The effects of ratios of thickness to crack length(h/a), crack length to width(a/W) and boundary conditions are investigated. Very good agreement with the existing solution in the literature are shown for the uncracked plate as well as the cracked plate.

  • PDF

Wave propagation in double nano-beams in thermal environments using the Reddy's high-order shear deformation theory

  • Fei Wu;Gui-Lin She
    • Advances in nano research
    • /
    • 제14권6호
    • /
    • pp.495-506
    • /
    • 2023
  • We study the bending wave, shear wave and longitudinal wave characteristics in the double nanobeams in this paper for the first time, in the process of research, based on the Reddy's higher-order shear deformation theory and considering shear layer stiffness, linear stiffness, inter-laminar stiffness, the pore volume fraction, temperature variation, functionally graded index influence on wave propagation, based on the nonlocal strain gradient theory and Hamilton variational principle, the wave equation of the double-nanometer beams are derived. Since there are three different motion states for the double nanobeams, which includes the cases of "in phase", "out of phase" and "one nanobeam fixed", the propagation characteristics of shear-, bending-, and longitudinal- waves in these three cases are discussed respectively, and some valuable conclusions are obtained.

Influence of clamped-clamped boundary conditions on the mechanical stress, strain and deformation analyses of cylindrical sport equipment

  • Yuhao Yang;Mohammad Arefi
    • Geomechanics and Engineering
    • /
    • 제35권5호
    • /
    • pp.465-473
    • /
    • 2023
  • The higher order shear deformable model and an exact analytical method is used for analytical bending analysis of a cylindrical shell subjected to mechanical loads, in this work. The shell is modelled using sinusoidal bivariate shear strain theory, and the static governing equations are derived using changes in virtual work. The eigenvalue-eigenvector method is used to exactly solve the governing equations for a constrained cylindrical shell The proposed kinematic relation decomposes the radial displacement into bending, shearing and stretching functions. The main advantage of the method presented in this work is the study of the effect of clamping constraints on the local stresses at the ends. Stress, strain, and deformation analysis of shells through thickness and length.

굽힘을 고려한 원형 및 정사각형컵 딥드로잉 공정의 탄소성 유한요소해석 (Elastic-Plastic Finite Element Analysis of Deep Drawings of Circular and Square Cups Considering Bending)

  • 심현보;양동열
    • 대한기계학회논문집
    • /
    • 제18권7호
    • /
    • pp.1738-1750
    • /
    • 1994
  • Both cylindrical cup drawing and square cup drawing are analyzed using membrane analysis as well as shell analysis by the elastic-plastic finite element method. An incremental formulation incorporating the effect of large deformation and normal anisotropy is used for the analysis of elastic-plastic non-steady deformation. The computed results are compared with the existing experimental results to show the validity of the analysis. Comparisons are made in the punch load and distribution of thickness strain between the membrane analysis and the shell analysis for both cylindrical and square cup drawing processes. In punch load, both analyses show very little difference and also show generally good agreement with the experiment. For the cylindrical cup deep drawing, the computed thickness strain of a membrane analysis, however, shows a wide difference with the experiment. In the shell analysis, the thickness strain shows good agrement with the experiment. For the square cup deep drawing, both membrane and shell analyses show a wide difference with experiment, this may be attributable to the ignorance of the shear deformation. Concludingly, it has been shown that the membrane approach shows a limitation for the deep drawing process in which the effect of bending is not negligible and more exact information on the thickness strain distribution is required.