• Title/Summary/Keyword: bending characteristics

Search Result 1,424, Processing Time 0.033 seconds

Experimental Study on The Bending Collapse Characteristics of Al Rectangular Tubes (알루미늄 사각관의 굽힘붕괴특성에 관한 실험적 고찰)

  • 강신유;김창수;정태은
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1997.03a
    • /
    • pp.265-272
    • /
    • 1997
  • In this paper the bending collapse characteristics of 60 series Al rectangular tubes were studied with a pure bending collapse test rig which could apply the pure bending moment, there occured three kinds of bending collapse modes - local buckling, delayed buckling, tensile failure - depending on the b/t(width/thickness) ratio and material properties. Experiment results are compared with the results of finite element method.

  • PDF

Bending Characteristics of Ag Micro Circuits using Electrohydrodynamics Printing Technology (전기수력학적 프린팅 기술을 이용한 Ag 미세회로의 굽힘 특성)

  • Lee, Yong-Chan;Ahn, Ju-Hun;Lee, Chang-Yull
    • Journal of Aerospace System Engineering
    • /
    • v.13 no.4
    • /
    • pp.37-42
    • /
    • 2019
  • The objective of this study was to study the bending characteristics of Ag nano ink using EHD (Electrohydrodynamics) inkjet printing technology for flexibility and miniaturization of devices. The optimal conditions for the technology were derived, and bending characteristics of the Ag nano circuit obtained. For the EHD printing, it is essential to find the optimal point for each parameter such as material characteristics, density, flow rate, voltage, discharge height etc. Therefore, it was derived as the point from the working height and the applied voltage. Also, bending characteristics are confirmed by measuring resistance with each radius of curvature using a fabricated bending module. It was confirmed that rate of resistance change increases rapidly as the radius of curvature increases.

Experimental Study on The Bending Collapse Characteristics of Aluminum Rectangular Tubes (알루미늄 사각관의 굽힘붕괴특성에 관한 실험적 고찰)

  • Kim, Chang-Soo;Chung, Tae-Eun;Kang, Shin-You
    • Transactions of Materials Processing
    • /
    • v.7 no.1
    • /
    • pp.49-58
    • /
    • 1998
  • In this paper the bending collapse characteristics of 6XXX series aluminum rectangular tubes were studied with a pure bending collapse test rig which could apply the pure bending moment without imposing additional shear and tensile forces. Under the pure bending moment, there occured three kinds of bending collapse modes-local buckling delayed buckling and tensile failure-depending on the a, b, t (depth width thickness) and material properties. Experimental results are compared with the results of finite element method and other methods.

  • PDF

Strain characteristics of Ag sheathed Bi-2223 superconducting tapes according to bending mode (굽힘모드에 따른 Ag 시스 Bi-2223 초전도장척 테이프의 굽힘 변형률 특성)

  • Shin, H.S.;Choi, S.Y.;Ko, D.K.;Ha, H.S.;Ha, D.W.;Oh, S.S.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.04a
    • /
    • pp.50-54
    • /
    • 2002
  • Influences of bending strain on the critical current ($I_c$) in Ag-sheathed Bi-2223 superconducting tapes at 77K were investigated. The effect of bending mode on the bending strain characteristics was discussed in viewpoints of sample geometry, n-value and damage morphology. Especially, in this paper, we reported the $I_c$ behavior in Ag alloy sheathed Bi-2223 multifilamentary superconducting tapes under hard bending. As a result, $I_c$ degradation behavior of the hard bending appeared remarkably than the case of easy bending, but it did not influence greatly on the n-value.

  • PDF

The characteristics of bending collapse of aluminum/GFRP hybrid tube (알루미늄/GFRP 혼성튜브의 굽힘붕괴 특성)

  • 송민철;이정주
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2000.11a
    • /
    • pp.84-87
    • /
    • 2000
  • Square tubes used for vehicle structure components have an important role on keeping its stiffness and preserving occupant safety in vehicle collision and rollover in which it experience axial collapse, bending collapse or both. Bending collapse, which absorbs kinetic energy of the impact and retains a survival space for the occupant, is a dominant failure mode in oblique collision and rollover. Thus, in this paper, the bending collapse characteristics such as the maximum bending moment and energy absorption capacity of the square tube replaced by light-weight material were evaluated and presented. The bending test of cantilever tubes which were fabricated with aluminum, GFRP and aluminum/ GFRP hybrid by co-curing process was performed. Then the maximum bending moment and the energy absorption capacity from the moment-angle curve were evaluated. Based on the test results, it was found that aluminum/ GFRP hybrid tube can show better specific energy absorption capacity compared to the pure aluminum or GFRP tube and can convert unstable collapse mode which may occur in pure GFRP tube to stable collapse mode like a aluminum tube in which plastic hinge is developed.

  • PDF

Bending characteristics of ISB panel with dimple shapes as inner structures (딤플형 내부 구조체를 가진 ISB 판넬의 굽힘 강성 특성)

  • Ahn D.G.;Lee S.H.;Kim J.S.;Moon G.J.;Han G.Y.;Jung C.J.;Yang D.Y.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.117-118
    • /
    • 2006
  • The objective of this paper is to investigate into bending and failure characteristics of ISB panel with dimple shapes as inner structures. Through three-points bending test, the force-displacement curve and the failure shape are obtained to examine the deformation pattern, characteristic data including maximum load and displacement at the maximum load and failure pattern for the ISB panel. In addition, the influence of design parameters for ISB panel on the bending stiffness and failure mode has been found. From the results of the experiments, it has been shown that bending and failure characteristics of the ISB panel can be controlled by the ratio of radius and the direction of the material.

  • PDF

Effect of Grain Angle on Bending Properties of Pinus densiflora (소나무재의 휨 가공성에 미치는 섬유경사각의 영향)

  • Kim, Jung-Hwan;Lee, Weon-Hee
    • Journal of the Korean Wood Science and Technology
    • /
    • v.29 no.2
    • /
    • pp.118-125
    • /
    • 2001
  • In this study, it was examined the characteristics of bending property of red pine(Pinus densiflora S, et Z.) related to slope of grain. At first, we have investigated the characteristics of wood species for bending property. At second, it was examined the relationships between grain angle and its related bending property. Specimens were made following to grain angle $0^{\circ}$, $30^{\circ}$, $45^{\circ}$, $60^{\circ}$, $90^{\circ}$, respectively. Dimension of wood materials was $10mm(T){\times}20mm(R){\times}350mm(L)$. Microwave irradiation time for bending process was 30, 60, 90, 120 seconds. The result of this study were as follows ; 1. Grain angle of wood was closely related to Young's modulus on bending process. In the process of bending with various grain angle, wood bending was easily proceed on the high grain angle range. 2. However, the strength of bent wood was very weak when the grain angle was high. Therefore, it was considered suitable grain angle for bending was existed. 3. The characteristics of wood properties for wood bending were very different among wood species.

  • PDF

A Study on the Bending Collapse Analysis and Test of Al Extrusion Members (알루미늄 압출부재의 굽힘붕괴 해석 및 실험에 관한연구)

  • Kang, Shin-You;Seo, Sung-Soo
    • Journal of Industrial Technology
    • /
    • v.17
    • /
    • pp.213-218
    • /
    • 1997
  • This study is concerned with characteristics of bending collapse of aluminum members with multi-cell section. Aluminum is light so it is compatible of being used for vehicle structures members. Bending collpase behaviors of aluminum members with multi-cell section are very complex and tension failure mode are occured in experiment. In this paper, the aluminum members are modeled to be able to represent the tension failure mode and, characteristics of bending collapse of aluminum members with multi-cell section by experimental method are compared with the results of PAM-CRASH.

  • PDF

A Study on the Design of Flexible Display Considering the Failure Characteristics of ITO Layer (플렉시블 디스플레이에서 ITO층의 파괴 특성을 고려한 설계연구)

  • Kim, Min Gyu;Park, Sang Baek;Chae, Soo-Won
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.5
    • /
    • pp.552-558
    • /
    • 2013
  • In recent years the interest on flexible display has been increasing as a future display due to its bendable characteristics. An ITO(indium tin oxide) layer, which is part of a flexible display, can be broken easily while bending because it is made of brittle materials. This brittle property can cause the malfunction of flexible display. To analyze fracture characteristics of ITO layer, bending test was conducted commonly. However, it is not possible to know specific phenomena on bended ITO layer by simple bending test only. Accordingly, in this study, the FE(finite element) model is developed similarly to a real flexible display to analyze stress distribution of flexible display under bending condition, especially on ITO layer. To validate FE model, actual bending test was conducted and the test results were compared with the simulation results by measuring reaction forces during bending. By using the developed model, FE analysis about the effect of design parameter (Thickness & Young's Modulus of BL) on ITO Layer was performed. By explained FE analysis above, this research draws a conclusion of reliable design guide of flexible display, especially on ITO layer.

Bending Collapse Characteristics of Hat Section Beam Filled with Structural Foam (폼 충진 모자단면 빔의 굽힘붕괴 특성)

  • Lee, Il-Seok;Kang, Sung-Jong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.2
    • /
    • pp.92-99
    • /
    • 2006
  • Design capability for high safety vehicle with light weight is crucial to enhancing competitive power in vehicle market. The structural foam can contribute to restraining section distortion in body members undergoing bending collapse at vehicle crash. In this study, first, the validation of analysis model including structural foam model for simulating fracture behavior was discussed, and the bending collapse characteristics of five representative section types were analyzed and compared. Next, with changing the laminate foam shape, load carrying capability and absorbed energy were observed. The results suggests a design strategy of body members filled with laminate foam, leading to effectively elevating bending collapse characteristics with weight increase in the minimum.