• Title/Summary/Keyword: behavior response performance

Search Result 708, Processing Time 0.046 seconds

Influence of Economic Value and Information Quality on Repurchase Intention in Social Commerce based on Motivation Theory (소셜커머스의 경제적 가치와 정보품질이 재구매의도에 미치는 영향 : 동기이론을 기반으로)

  • Kang, Ju-Hee;Moon, Tae-Soo
    • The Journal of Information Systems
    • /
    • v.26 no.2
    • /
    • pp.63-83
    • /
    • 2017
  • Purpose: In Korea, market size of social commerce has been increased steadily and highly, but profits of social commerce companies have been decreased because of excessive marketing cost. To overcome this stagnant market environment, new marketing strategy that could attract customers and make customers continue to use social commerce is required instead of cost consuming marketing strategy. The purpose of this study is to investigate the relationship among characteristics of social commerce - that is, economic value and information quality - usefulness, enjoyment, satisfaction and repurchase intention by applying motivation theory to the area of social commerce. Design/Methodology/Approach: Previous researches have been studied by applying Expectation-Confirmation Model (ECM), Theory of Planned Behavior (TPB), Technology Acceptance Model (TAM) and Stimulus-Organism-Response (S-O-R) Model, although there are many studies related with customer acceptance model in the field of e-commerce. However, there is not so many studies in applying motivation theory. So this study adopts new approach to examine why customers use social commerce based on motivation theory. Thus, this study adopts economic value and information quality as antecedents, and then customers will perceive extrinsic and intrinsic motivation; usefulness is extrinsic and enjoyment is intrinsic, and adopts satisfaction and repurchase intention as a dependent variable. The data of questionnaire were collected from customers who have experience to buy something in social commerce. 228 questionnaires as data unit of individual level were collected using random sampling. Findings: This study proved empirically that the relationship between antecedents and motivation factors has a positive influence, and motivation factors also have a positive influence on repurchase intention through satisfaction. This study provides the managers an insight that social commerce companies should pay more attention to improve customer satisfaction in order to increase higher performance in repurchase intention of social commerce.

Zn2+ PVC-based Membrane Sensor Based on 3-[(2-Furylmethylene)amino]-2-thioxo-1,3-thiazolidin-4-one

  • Ganjali, Mohammad Reza;Zamani, Hassan Ali;Norouzi, Parviz;Adib, Mehdi;Rezapour, Morteza;Aceedy, Mohammad
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.4
    • /
    • pp.579-584
    • /
    • 2005
  • The 3-[(2-furylmethylene)amino]-2-thioxo-1,3-thiazolidin-4-one (FTT) was used as an excellent ionophore in construction of a $Zn^{2+}$ PVC-based membrane sensor. The best performance was obtained with a membrane composition of 30% poly(vinyl chloride), 62% nitrobenzen (NB), 3% FTT and 5% sodium tetraphenyl borate (TBP). This membrane sensor shows very good selectivity and sensitivity towards $Zn^{2+}$ over a wide variety of cations, including alkali, alkaline earth, transition and heavy metal ions. The membrane sensor revealed a great enhancement in selectivity coefficients for $Zn^{2+}$ ions, in comparison to the previously reported $Zn^{2+}$ membrane sensors. Theoretical studies also showed the selective interaction of TFF and $Zn^{2+}$ ions. The proposed membrane sensor exhibits a Nernstian behavior (with slope of 29.3 ${\pm}$ 0.3 mV per decade) over a wide concentration range (1.0 ${\times}$ $10^{-6}$-1.0 ${\times}$ $10^{-2}$) with a detection limit of 8.5 ${\times}$ $10^{-7}$ M (52 ng mL$^{-1}$). It shows relatively fast response time, in the whole concentration range ($\lt$ 20 s), and can be used for at least 10 weeks in a pH range of 3.0-7.0. The proposed membrane sensor was successfully used in direct determination of $Zn^{2+}$ ions in wastewater of industrial zinc electroplating companies, and also as an indicator electrode in titration with EDTA.

Seismic Improvement of Staggered Truss Systems using Buckling Restrained Braces (비좌굴 가새를 이용한 스태거드 트러스 시스템의 내진성능향상)

  • Kim, Jin-Koo;Lee, Joon-Ho
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.10 no.2 s.48
    • /
    • pp.11-19
    • /
    • 2006
  • In this paper the seismic performances of 4, 10, and 30-story staggered truss systems (STS) were evaluated by observing the force-displacement relationship up io failure. The results were compared with the seismic performance of conventional moment resisting frames and braced frames. According to the analysis results, the STS showed relatively satisfactory lateral load resisting capability. However, in the mid- to high-rise STS, plastic hinges formed first at the chords were transferred to vertical members of the vierendeel panels, which formed a week link and subsequently leaded to brittle collapse of the structure. Therefore to enhance the ductility of STS it would be necessary to reinforce the vertical bracing members of the virendeel panels so that the plastic hinges, once toned in cord members of a virendeel panel, spread out to virendeel panels of neighboring stories.

The effects of vertical earthquake motion on an R/C structure

  • Bas, Selcuk;Kalkan, Ilker
    • Structural Engineering and Mechanics
    • /
    • v.59 no.4
    • /
    • pp.719-737
    • /
    • 2016
  • The present study investigated the earthquake behavior of R/C structures considering the vertical earthquake motion with the help of a comparative study. For this aim, the linear time-history analyses of a high-rise R/C structure designed according to TSC-2007 requirements were conducted including and excluding the vertical earthquake motion. Earthquake records used in the analyses were selected based on the ratio of vertical peak acceleration to horizontal peak acceleration (V/H). The frequency-domain analyses of the earthquake records were also performed to compare the dominant frequency of the records with that of the structure. Based on the results obtained from the time-history analyses under the earthquake loading with (H+V) and without the vertical earthquake motion (H), the value of the overturning moment and the top-story vertical displacement were found to relatively increase when considering the vertical earthquake motion. The base shear force was also affected by this motion; however, its increase was lower compared to the overturning moment and the top-story vertical displacement. The other two parameters, the top-story lateral displacement and the top-story rotation angle, barely changed under H and H+V loading cases. Modal damping ratios and their variations in horizontal and vertical directions were also estimated using response acceleration records. No significant change in the horizontal damping ratio was observed whereas the vertical modal damping ratio noticeably increased under H+V loading. The results obtained from this study indicate that the desired structural earthquake performance cannot be provided under H+V loading due to the excessive increase in the overturning moment, and that the vertical damping ratio should be estimated considering the vertical earthquake motion.

Characteristics of Earthquake Responses of a Rectangular Liquid Storage Tanks Subjected to Bi-directional Horizontal Ground Motions (수평 양방향 지반운동이 작용하는 직사각형 액체저장탱크의 지진응답 특성)

  • Lee, Jin Ho;Lee, Se Hyeok
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.33 no.1
    • /
    • pp.45-53
    • /
    • 2020
  • Analytical and experimental studies show that the dynamic behavior of liquid storage tanks is significantly influenced by the fluid-structure interaction (FSI). The effects of FSI must be rigorously considered for accurate earthquake analysis and seismic design of liquid storage tanks. In this study, a dynamic analysis of a rectangular liquid storage tank subjected to bi-directional earthquake ground motions is performed and its dynamic characteristics are examined, with the effects of FSI rigorously considered. Hydrodynamic pressure is evaluated using the finite-element approach with acoustic elements and applied to the structure. The responses of the rectangular tank subjected to bi-directional earthquake ground motions are thus obtained. It can be observed that the incident angle of bi-directional horizontal ground motions has significant effects on the dynamic responses of the considered system. Therefore, the characteristics of the system must be considered in its seismic design and performance evaluation.

Analysis on In-Plane Behavior of Unreinforced Masonry Walls (비보강 조적벽체의 면내거동 해석)

  • 김장훈;권기혁
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.6 no.3
    • /
    • pp.1-10
    • /
    • 2002
  • A series of unreinforced masonry(URM) walls were analytically investigated by FEM for a limited version of seismic in-plane performance. For this, URM walls were assumed to be continum and modeled as isotropic plane stress elements, within which the nature of cracking was propogated. Accordingly, behavioral mode of cracking in URM was modeled by smeared-crack approach. Total of 70 cases were considered for various parameters such as axial load ratio, aspect ratio and effective section area ratio due to the existence of opening, etc. The analysis results indicate that these parameters significantly and interactively influence over the ultimate strength of URM walls. Finally, it is suggested that the response modification factor for URM adopted in the current Korean Standard should be validated considering various forms of brittleness and probable failure modes in URM.

ATC-55 Based Friction Damper Design Procedure for Controlling Inelastic Seismic Responses (비탄성 지진응답 제어를 위한 ATC-55에 기반한 마찰감쇠기 설계절차)

  • Kim, Hyoung-Seop;Min, Kyung-Won;Lee, Sang-Hyun;Park, Ji-Hun
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.9 no.1 s.41
    • /
    • pp.9-16
    • /
    • 2005
  • The purpose of this paper is to present a design procedure of a friction damper for controlling elastic and inelastic responses of building structures under earthquake excitation. The equivalent damping and period increased by the friction damper are estimated using ATC-40 and ATC-55 procedures which provide equivalent linear system for bilinear one, and then a design formula to achieve target performance response level by the friction damper is presented. It is identified that there exists error between the responses obtained by this formula and by performing nonlinear analysis and the features of the error vary according to the hardening ratio, yield strength ratio, and structural period. Equations for compensating the error are proposed based on the least square method, and the results from numerical analysis indicate that the error is significantly reduced. The proposed formula can be used without much error for designing a friction damper for retrofitting a structure showing elastic or inelastic behavior.

Sliding Mode Fuzzy Control for Wind Vibration Control of Tall Building (Sliding Mode Fuzzy Control을 사용한 바람에 의한 대형 구조물의 진동제어)

  • 김상범;윤정방
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2000.10a
    • /
    • pp.79-83
    • /
    • 2000
  • A sliding mode fuzzy control (SMFC) with disturbance estimator is applied to design a controller for the third generation benchmark problem on an wind-excited building. A distinctive feature in vibration control of large civil infrastructure is the existence of large disturbances, such as wind, earthquake, and sea wave forces. Those disturbances govern the behavior of the structure, however, they cannot be precisely measured, especially for the case of wind-induced vibration control. Since the structural accelerations are measured only at a limited number of locations without the measurement of the wind forces, the structure of the conventional control may have the feed-back loop only. General structure of the SMFC is composed of a compensation part and a convergent part. The compensation part prevents the system diverge, and the convergent part makes the system converge to the sliding surface. The compensation part uses not only the structural response measurement but also the disturbance measurement, so the SMFC has a feed-back loop and a feed-forward loop. To realize the virtual feed-forward loop for the wind-induced vibration control, disturbance estimation filter is introduced. the structure of the filter is constructed based on an auto regressive model for the stochastic wind force. This filter estimates the wind force at each time instance based on the measured structural responses and the stochastic information of the wind force. For the verification of the proposed algorithm, a numerical simulation is carried out on the benchmark problem of a wind-excited building. The results indicate that the present control algorithm is very efficient for reducing the wind-induced vibration and that the performance indices improve as the filter for wind force estimation is employed.

  • PDF

Detection of tension force reduction in a post-tensioning tendon using pulsed-eddy-current measurement

  • Kim, Ji-Min;Lee, Jun;Sohn, Hoon
    • Structural Engineering and Mechanics
    • /
    • v.65 no.2
    • /
    • pp.129-139
    • /
    • 2018
  • Post-tensioning (PT) tendons are commonly used for the assembly of modularized concrete members, and tension is applied to the tendons during construction to facilitate the integrated behavior of the members. However, the tension in a PT tendon decreases over time due to steel corrosion and concrete creep, and consequently, the stress on the anchor head that secures the PT tendon also diminishes. This study proposes an automatic detection system to identify tension reduction in a PT tendon using pulsed-eddy-current (PEC) measurement. An eddy-current sensor is installed on the surface of the steel anchor head. The sensor creates a pulsed excitation to the driving coil and measures the resulting PEC response using the pick-up coil. The basic premise is that the tension reduction of a PT tendon results in stress reduction on the anchor head surface and a change in the PEC intensity measured by the pick-up coil. Thus, PEC measurement is used to detect the reduction of the anchor head stress and consequently the reduction of the PT tendon force below a certain threshold value. The advantages of the proposed PEC-based tension-reduction-detection (PTRD) system are (1) a low-cost (< $ 30), low-power (< 2 Watts) sensor, (2) a short inspection time (< 10 seconds), (3) high reliability and (4) the potential for embedded sensing. A 3.3 m long full-scale monostrand PT tendon was used to evaluate the performance of the proposed PTRD system. The PT tendon was tensioned to 180 kN using a custom universal tensile machine, and the tension was decreased to 0 kN at 20 kN intervals. At each tension, the PEC responses were measured, and tension reduction was successfully detected.

Repair of seismically damaged RC bridge bent with ductile steel bracing

  • Bazaez, Ramiro;Dusicka, Peter
    • Steel and Composite Structures
    • /
    • v.26 no.6
    • /
    • pp.745-757
    • /
    • 2018
  • The inclusion of a ductile steel bracing as means of repairing an earthquake-damaged bridge bent is evaluated and experimentally assessed for the purposes of restoring the damaged bent's strength and stiffness and further improving the energy dissipation capacity. The study is focused on substandard reinforced concrete multi-column bridge bents constructed in the 1950 to mid-1970 in the United States. These types of bents have numerous deficiencies making them susceptible to seismic damage. Large-scale experiments were used on a two-column reinforced concrete bent to impose considerable damage of the bent through increasing amplitude cyclic deformations. The damaged bent was then repaired by installing a ductile fuse steel brace in the form of a buckling-restrained brace in a diagonal configuration between the columns and using post-tensioned rods to strengthen the cap beam. The brace was secured to the bent using steel gusset plate brackets and post-installed adhesive anchors. The repaired bent was then subjected to increasing amplitude cyclic deformations to reassess the bent performance. A subassemblage test of a nominally identical steel brace was also conducted in an effort to quantify and isolate the ductile fuse behavior. The experimental data from these large-scale experiments were analyzed in terms of the hysteretic response, observed damage, internal member loads, as well as the overall stiffness and energy dissipation characteristics. The results of this study demonstrated the effectiveness of utilizing ductile steel bracing for restoring the bent and preventing further damage to the columns and cap beams while also improving the stiffness and energy dissipation characteristics.