• Title/Summary/Keyword: bee colony algorithm

Search Result 55, Processing Time 0.019 seconds

Optimum cost design of RC columns using artificial bee colony algorithm

  • Ozturk, Hasan Tahsin;Durmus, Ahmet
    • Structural Engineering and Mechanics
    • /
    • v.45 no.5
    • /
    • pp.643-654
    • /
    • 2013
  • Optimum cost design of columns subjected to axial force and uniaxial bending moment is presented in this paper. In the formulation of the optimum design problem, the height and width of the column, diameter and number of reinforcement bars are treated as design variables. The design constraints are implemented according to ACI 318-08 and studies in the literature. The objective function is taken as the cost of unit length of the column consisting the cost of concrete, steel, and shuttering. The solution of the design problem is obtained using the artificial bee colony algorithm which is one of the recent additions to metaheuristic techniques. The Artificial Bee Colony Algorithm is imitated the foraging behaviors of bee swarms. In application of this algorithm to the constraint problem, Deb's constraint handling method is used. Obtained results showed that the optimum value of numerical example is nearly same with the existing values in the literature.

Optimum design of a reinforced concrete beam using artificial bee colony algorithm

  • Ozturk, H.T.;Durmus, Ay.;Durmus, Ah.
    • Computers and Concrete
    • /
    • v.10 no.3
    • /
    • pp.295-306
    • /
    • 2012
  • Optimum cost design of a simply supported reinforced concrete beam is presented in this paper. In the formulation of the optimum design problem, the height and width of the beam, and reinforcement steel area are treated as design variables. The design constraints are implemented according to ACI 318-08 and studies in the literature. The objective function is taken as the cost of unit length of the beam consisting the cost of concrete, steel and shuttering. The solution of the design problem is obtained using the artificial bee colony algorithm which is one of the recent additions to metaheuristic techniques. The artificial bee colony algorithm is imitated the foraging behaviors of bee swarms. In application of this algorithm to the constraint problem, Deb's constraint handling method is used. Obtained results showed that the optimum value of numerical example is nearly same with the existing values in the literature.

Discrete optimization of trusses using an artificial bee colony (ABC) algorithm and the fly-back mechanism

  • Fiouz, A.R.;Obeydi, M.;Forouzani, H.;Keshavarz, A.
    • Structural Engineering and Mechanics
    • /
    • v.44 no.4
    • /
    • pp.501-519
    • /
    • 2012
  • Truss weight is one of the most important factors in the cost of construction that should be reduced. Different methods have been proposed to optimize the weight of trusses. The artificial bee colony algorithm has been proposed recently. This algorithm selects the lightest section from a list of available profiles that satisfy the existing provisions in the design codes and specifications. An important issue in optimization algorithms is how to impose constraints. In this paper, the artificial bee colony algorithm is used for the discrete optimization of trusses. The fly-back mechanism is chosen to impose constraints. Finally, with some basic examples that have been introduced in similar articles, the performance of this algorithm is tested using the fly-back mechanism. The results indicate that the rate of convergence and the accuracy are optimized in comparison with other methods.

An Improved Artificial Bee Colony Algorithm Based on Special Division and Intellective Search

  • Huang, He;Zhu, Min;Wang, Jin
    • Journal of Information Processing Systems
    • /
    • v.15 no.2
    • /
    • pp.433-439
    • /
    • 2019
  • Artificial bee colony algorithm is a strong global search algorithm which exhibits excellent exploration ability. The conventional ABC algorithm adopts employed bees, onlooker bees and scouts to cooperate with each other. However, its one dimension and greedy search strategy causes slow convergence speed. To enhance its performance, in this paper, we abandon the greedy selection method and propose an artificial bee colony algorithm with special division and intellective search (ABCIS). For the purpose of higher food source research efficiency, different search strategies are adopted with different employed bees and onlooker bees. Experimental results on a series of benchmarks algorithms demonstrate its effectiveness.

Railway Track Maintenance Scheduling using Artificial Bee Colony (Artificial Bee Colony 기법을 이용한 철도궤도 유지보수 일정계획 수립 연구)

  • Nam, Duk-Hee;Kim, Ki-Dong;Lee, Sung-Uk;Kim, Sung-Soo
    • Journal of the Korean Society for Railway
    • /
    • v.13 no.6
    • /
    • pp.601-607
    • /
    • 2010
  • The objective of this paper is to propose a fast and easy Binary Artificial Bee Colony (BABC) heuristic algorithm to optimize NP-hard scheduling problem of railway track maintenance considering real conditions. The optimal or best solutions can be found using proposed BABC within very short or user specified computation time. We can greatly maximize the objective value using this proposed method in 30, 60, 100 and 200 work size railway track maintenance scheduling problems for experiment and analysis.

A hybrid algorithm for classifying rock joints based on improved artificial bee colony and fuzzy C-means clustering algorithm

  • Ji, Duofa;Lei, Weidong;Chen, Wenqin
    • Geomechanics and Engineering
    • /
    • v.31 no.4
    • /
    • pp.353-364
    • /
    • 2022
  • This study presents a hybrid algorithm for classifying the rock joints, where the improved artificial bee colony (IABC) and the fuzzy C-means (FCM) clustering algorithms are incorporated to take advantage of the artificial bee colony (ABC) algorithm by tuning the FCM clustering algorithm to obtain the more reasonable and stable result. A coefficient is proposed to reduce the amount of blind random searches and speed up convergence, thus achieving the goals of optimizing and improving the ABC algorithm. The results from the IABC algorithm are used as initial parameters in FCM to avoid falling to the local optimum in the local search, thus obtaining stable classifying results. Two validity indices are adopted to verify the rationality and practicability of the IABC-FCM algorithm in classifying the rock joints, and the optimal amount of joint sets is obtained based on the two validity indices. Two illustrative examples, i.e., the simulated rock joints data and the field-survey rock joints data, are used in the verification to check the feasibility and practicability in rock engineering for the proposed algorithm. The results show that the IABC-FCM algorithm could be applicable in classifying the rock joint sets.

Hybrid artificial bee colony-grey wolf algorithm for multi-objective engine optimization of converted plug-in hybrid electric vehicle

  • Gujarathi, Pritam K.;Shah, Varsha A.;Lokhande, Makarand M.
    • Advances in Energy Research
    • /
    • v.7 no.1
    • /
    • pp.35-52
    • /
    • 2020
  • The paper proposes a hybrid approach of artificial bee colony (ABC) and grey wolf optimizer (GWO) algorithm for multi-objective and multidimensional engine optimization of a converted plug-in hybrid electric vehicle. The proposed strategy is used to optimize all emissions along with brake specific fuel consumption (FC) for converted parallel operated diesel plug-in hybrid electric vehicle (PHEV). All emissions particulate matter (PM), nitrogen oxide (NOx), carbon monoxide (CO) and hydrocarbon (HC) are considered as optimization parameters with weighted factors. 70 hp engine data of NOx, PM, HC, CO and FC obtained from Oak Ridge National Laboratory is used for the study. The algorithm is initialized with feasible solutions followed by the employee bee phase of artificial bee colony algorithm to provide exploitation. Onlooker and scout bee phase is replaced by GWO algorithm to provide exploration. MATLAB program is used for simulation. Hybrid ABC-GWO algorithm developed is tested extensively for various values of speeds and torque. The optimization performance and its environmental impact are discussed in detail. The optimization results obtained are verified by real data engine maps. It is also compared with modified ABC and GWO algorithm for checking the effectiveness of proposed algorithm. Hybrid ABC-GWO offers combine benefits of ABC and GWO by reducing computational load and complexity with less computation time providing a balance of exploitation and exploration and passes repeatability towards use for real-time optimization.

Optimal placement of elastic steel diagonal braces using artificial bee colony algorithm

  • Aydin, E.;Sonmez, M.;Karabork, T.
    • Steel and Composite Structures
    • /
    • v.19 no.2
    • /
    • pp.349-368
    • /
    • 2015
  • This paper presents a new algorithm to find the optimal distribution of steel diagonal braces (SDB) using artificial bee colony optimization technique. The four different objective functions are employed based on the transfer function amplitude of; the top displacement, the top absolute acceleration, the base shear and the base moment. The stiffness parameter of SDB at each floor level is taken into account as design variables and the sum of the stiffness parameter of the SDB is accepted as an active constraint. An optimization algorithm based on the Artificial Bee Colony (ABC) algorithm is proposed to minimize the objective functions. The proposed ABC algorithm is applied to determine the optimal SDB distribution for planar buildings in order to rehabilitate existing planar steel buildings or to design new steel buildings. Three planar building models are chosen as numerical examples to demonstrate the validity of the proposed method. The optimal SDB designs are compared with a uniform SDB design that uniformly distributes the total stiffness across the structure. The results of the analysis clearly show that each optimal SDB placement, which is determined based on different performance objectives, performs well for its own design aim.

Improvement of Topology Algorithm's Convergence Rate Using Chaotic Map (카오틱 맵을 이용한 위상 최적화 알고리즘의 수렴속도 향상)

  • Kim, Yong-Ho;Kim, Gi-Chul;Lee, Jae-Hwan;Jang, Hyo-Jae;Han, Seog-Young
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.23 no.3
    • /
    • pp.279-283
    • /
    • 2014
  • Recently, a topology algorithm based on the artificial bee colony algorithm (ABCA) has been proposed for static and dynamic topology optimization. From the results, the convergence rate of the algorithm was determined to be slightly slow. Therefore, we propose a new search method to improve the convergence rate of the algorithm using a chaotic map. We investigate the effect of the chaotic map on the convergence rate of the algorithm in static and dynamic topology optimization. The chaotic map has been applied to three cases, namely, employ bee search, onlooker bee search, and both employ bee as well as onlooker bee search steps. It is verified that the case in which the logistic function of the chaotic map is applied to both employ bee as well as onlooker bee search steps shows the best dynamic topology optimization, improved by 5.89% compared to ABCA. Therefore, it is expected that the proposed algorithm can effectively be applied to dynamic topology optimization to improve the convergence rate.

On Modification and Application of the Artificial Bee Colony Algorithm

  • Ye, Zhanxiang;Zhu, Min;Wang, Jin
    • Journal of Information Processing Systems
    • /
    • v.14 no.2
    • /
    • pp.448-454
    • /
    • 2018
  • Artificial bee colony (ABC) algorithm has attracted significant interests recently for solving the multivariate optimization problem. However, it still faces insufficiency of slow convergence speed and poor local search ability. Therefore, in this paper, a modified ABC algorithm with bees' number reallocation and new search equation is proposed to tackle this drawback. In particular, to enhance solution accuracy, more bees in the population are assigned to execute local searches around food sources. Moreover, elite vectors are adopted to guide the bees, with which the algorithm could converge to the potential global optimal position rapidly. A series of classical benchmark functions for frequency-modulated sound waves are adopted to validate the performance of the modified ABC algorithm. Experimental results are provided to show the significant performance improvement of our proposed algorithm over the traditional version.