DOI QR코드

DOI QR Code

Optimum design of a reinforced concrete beam using artificial bee colony algorithm

  • Ozturk, H.T. (Department of Civil Engineering, Karadeniz Technical University) ;
  • Durmus, Ay. (Department of Civil Engineering, Karadeniz Technical University) ;
  • Durmus, Ah. (Department of Civil Engineering, Karadeniz Technical University)
  • Received : 2011.05.10
  • Accepted : 2012.03.27
  • Published : 2012.09.25

Abstract

Optimum cost design of a simply supported reinforced concrete beam is presented in this paper. In the formulation of the optimum design problem, the height and width of the beam, and reinforcement steel area are treated as design variables. The design constraints are implemented according to ACI 318-08 and studies in the literature. The objective function is taken as the cost of unit length of the beam consisting the cost of concrete, steel and shuttering. The solution of the design problem is obtained using the artificial bee colony algorithm which is one of the recent additions to metaheuristic techniques. The artificial bee colony algorithm is imitated the foraging behaviors of bee swarms. In application of this algorithm to the constraint problem, Deb's constraint handling method is used. Obtained results showed that the optimum value of numerical example is nearly same with the existing values in the literature.

Keywords

References

  1. ACI 318 (2008), Building code requirements for structural concrete and commentary, American Concrete Institute, USA.
  2. Ak n, A. (2010), Optimum design of reinforced concrete plane frames using harmony search algorithm, Ph.D. Thesis, Graduate School of Natural and Applied Sciences of Middle East Technical University, Ankara, Turkey.
  3. Al-Salloum, Y.A. and Siddiqi, G.H. (1994), "Cost optimum design of reinforced concrete beams", ACI Struct. J., 91(6), 647-655.
  4. Balling, R.J. and Yao, X. (1997), "Optimization of reinforced concrete frames", J. Struct. Eng.-ASCE, 123(2), 193-202. https://doi.org/10.1061/(ASCE)0733-9445(1997)123:2(193)
  5. Camp, C.V., Pezeshk, S. and Hansson, H. (2003), "Flexural design of reinforced concrete frames using a genetic algorithm", J. Struct. Eng.-ASCE, 129(1), 105-115. https://doi.org/10.1061/(ASCE)0733-9445(2003)129:1(105)
  6. Chakrabarty, B.K. (1992), "Models for optimal design of reinforced concrete beams", Comput. Struct., 42(3), 447-451. https://doi.org/10.1016/0045-7949(92)90040-7
  7. Choi, C.K. and Kwak, H.G. (1990), "Optimum RC member design with predetermined discrete sections", J. Struct. Eng.-ASCE, 116(10), 2634-2655. https://doi.org/10.1061/(ASCE)0733-9445(1990)116:10(2634)
  8. Chou, T. (1977), "Optimum reinforced concrete T-beam sections", J. Struct. Div., 103(8), 1605-1617.
  9. Coello Coello, C.A. (2002), "Theoretical and numerical constraint handling techniques used with evolutionary algorithms: a survey of the state of the art", Comput. Method. Appl. M., 191(11-12), 1245-1287. https://doi.org/10.1016/S0045-7825(01)00323-1
  10. Coello Coello, C.A., Christiansen, A.D. and Santos Hernandez, F. (1997), "A simple genetic algorithm for the design of reinforced concrete beams", Eng. Comput., 13(4), 185-196. https://doi.org/10.1007/BF01200046
  11. Deb, K. (2000), "An efficient constraint handling method for genetic algorithms", Comput. Method. Appl. M., 186(2-4), 311-338. https://doi.org/10.1016/S0045-7825(99)00389-8
  12. Everard, N.J. (1993), Theory and problems of reinforced concrete design, Schaum's Outline Series, Third Edition, McGraw-Hill, USA.
  13. Fadaee, M.J. and Grierson, D.E. (1996), "Design optimization of 3D reinforced concrete structures", Struct. Multidiscip. O., 12(2-3), 127-134. https://doi.org/10.1007/BF01196945
  14. Govindaraj, V. and Ramasamy, J.V. (2005), "Optimum detailed design of reinforced concrete continuous beams using genetic algorithms", Comput. Struct., 84(1-2), 34-48. https://doi.org/10.1016/j.compstruc.2005.09.001
  15. Govindaraj, V. and Ramasamy, J.V. (2007), "Optimum detailed design of reinforced concrete frames using genetic algorithms", Eng. Optimiz., 39(4), 471-494. https://doi.org/10.1080/03052150601180767
  16. Haug, E.J. and Kirmser, P.G. (1967), "Minimum weight design of beams with inequality constraints on stress and deflection", J. Appl. Mech.-ASME, 34(4), 999-1004. https://doi.org/10.1115/1.3607869
  17. Karaboga, D. and Akay, B. (2009), "A comparative study of artificial bee colony algorithm", Appl. Soft. Comput., 214(1), 108-132.
  18. Karaboga, D. and Akay, B. (2011), "A modified artificial bee colony (ABC) algorithm for constrained optimization problems", Appl. Soft Comput., 11(3), 3021-3031. https://doi.org/10.1016/j.asoc.2010.12.001
  19. Karaboga, D. and Basturk, B. (2007), "Artificial bee colony (ABC) optimization algorithm for solving constrained optimization problems", Proceedings of IFSA 2007, Mexico, June.
  20. Karaboga, D. and Basturk, B. (2008), "On the performance of artificial bee colony (ABC)", Appl. Soft. Comput., 8(1), 687-697. https://doi.org/10.1016/j.asoc.2007.05.007
  21. Karihaloo, B.L. (1979), "Optimal design of multi-purpose tie-beams", J. Optimiz. Theory App., 27(3), 427-438. https://doi.org/10.1007/BF00933033
  22. Kirsh, U. (1983), "Multilevel optimum design of reinforced concrete structures", Eng. Optimiz., 6(4), 207-212. https://doi.org/10.1080/03052158308902471
  23. Krishnamoorty, C.S. and Munro, J. (1973), "Linear program for optimal design of reinforced concrete frames", Procced. IABSE, 33(1), 119-141.
  24. Kwak, H.G. and Kim, J. (2008), "Optimum design of reinforced concrete frames based on predetermined section databese", Comput.-Aided Civ. Inf., 40(3), 396-408. https://doi.org/10.1016/j.cad.2007.11.009
  25. Kwak, H.G. and Kim, J. (2009), "An integrated genetic algorithm with direct search for optimum design of RC frames", Comput.-Aided Civ. Inf., 41(7), 490-500. https://doi.org/10.1016/j.cad.2009.03.005
  26. Lee, C. and Ahn, J. (2003), "Flexural design of reinforced concrete frames by genetic algorithm", J. Struct. Eng.- ASCE, 129(6), 762-774. https://doi.org/10.1061/(ASCE)0733-9445(2003)129:6(762)
  27. Leroy Friel, L. (1974), "Optimum single reinforced concrete sections", ACI J., 71(11), 556-558.
  28. Pham, D.T., Granbarzadeh, A., Koc, E., Otri, S., Rahim, S. and Zaidi, M. (2006), "The bees algorithm - a novel tool for complex optimization problems", Proceedings of Innovation Production Machines and System Virtual Conference, http://conference.iproms.org., July.
  29. Prakash, A., Agarwala, S.K. and Singh, K.K. (1988), "Optimum design of reinforced concrete sections", Comput. Struct., 30(4), 1009-1011. https://doi.org/10.1016/0045-7949(88)90142-3
  30. Rajeev, S. and Krishnamoorthy, C.S. (1998), "Genetic algorithm-based methodology for design optimization of reinforced concrete frames", Comput.-Aided Civ. Inf., 13(1), 63-74. https://doi.org/10.1111/0885-9507.00086
  31. Saouma, V.E. and Murad, R.S. (1984), "Partially prestressed concrete beam optimization", J. Struct. Eng.-ASCE, 110(3), 589-604. https://doi.org/10.1061/(ASCE)0733-9445(1984)110:3(589)
  32. Singh, A. (2009), "An artificial bee colony algorithm for the leaf-constrained minimum spanning tree problem", Appl. Soft Comput., 9(2), 625-631. https://doi.org/10.1016/j.asoc.2008.09.001
  33. Sonmez, M. (2011), "Artificial bee colony algorithm for optimization of truss structures", Appl. Soft Comput., 11(2), 2406-2418. https://doi.org/10.1016/j.asoc.2010.09.003
  34. Teodorovic, D. (2003), "Transport modeling by multi-agent systems: a swarm intelligence approach", Transport. Plan. Techn., 26(4), 289-312. https://doi.org/10.1080/0308106032000154593
  35. Teodorovic, D. and Orco, M.D. (2005), "Bee colony optimization-a comparative learning approach to computer transportation problems", Adv. IA Method. Transport., 51-60.
  36. Tereshko, V. (2000), "Reaction-diffusion model of a honeybee colony's foraging behaviour", Lecture Notes in Comput. Sci., 1917, 807-816.
  37. Venkayya, V.B. (1971), "Design of optimum structures", Comput. Struct., 1(1-2), 265-309. https://doi.org/10.1016/0045-7949(71)90013-7
  38. Whitney, C.S. (1942), "Plastic theory of reinforced concrete design", Trans. ASCE, 107, 251-326.
  39. Yang, X.S. (2005), "Engineering optimization via nature-inspired virtual bee algorithms", Lecture Notes in Comput. Sci., 3562, 317-323.
  40. Zielinski, Z.A., Long, W. and Troitsky, M.S. (1995), "Designing reinforced concrete short tied columns using optimization technique", ACI Struct. J., 92(5), 619-626.

Cited by

  1. Optimum design of RC shallow tunnels in earthquake zones using artificial bee colony and genetic algorithms vol.17, pp.4, 2016, https://doi.org/10.12989/cac.2016.17.4.435
  2. Cost optimization of reinforced high strength concrete T-sections in flexure vol.49, pp.1, 2014, https://doi.org/10.12989/sem.2014.49.1.065
  3. Optimal parameters and performance of artificial bee colony algorithm for minimum cost design of reinforced concrete frames vol.151, 2017, https://doi.org/10.1016/j.engstruct.2017.08.059
  4. Optimal design of reinforced concrete beams: A review vol.13, pp.4, 2012, https://doi.org/10.12989/cac.2014.13.4.457
  5. Yapay arı koloni algoritması kullanılarak betonarme istinat duvarlarının optimum maliyet tasarımını etkileyen parametrelerin incelenmesi vol.33, pp.1, 2012, https://doi.org/10.17341/gazimmfd.406796
  6. A fast and robust procedure for optimal detail design of continuous RC beams vol.24, pp.4, 2019, https://doi.org/10.12989/cac.2019.24.4.313