• Title/Summary/Keyword: bearing stress

Search Result 683, Processing Time 0.025 seconds

The behavior of lightweight aggregate concrete filled steel tube columns under eccentric loading

  • Elzien, Abdelgadir;Ji, Bohai;Fu, Zhongqiu;Hu, Zhengqing
    • Steel and Composite Structures
    • /
    • v.11 no.6
    • /
    • pp.469-488
    • /
    • 2011
  • This paper consists of two parts; the first part describes the laboratory work concerning the behavior of lightweight aggregate concrete filled steel tubes (LACFT). Based on eccentricity tests, fifty-four specimens with different slenderness ratios (L/D= 3, 7, and 14) were tested. The main parameters varied in the test are: load eccentricity; steel ratio; and slenderness ratio. The standard load-strain curves of LACFT columns under eccentric loading were summarized and significant parameters affecting LACFT column's bearing capacity, failure mechanism and failure mode such as confinement effect and bond strength were all studied and analyzed through the comparison with predicted strength of concrete filled steel tube columns (CFT) using the existing codes such as AISC-LRFD (1999), CHN DBJ 13-51-2003 (2003) and CHN CECS 28:90 (1990). The second part of this paper presents the results of parametric study and introduces a practical and accurate method for determination of the maximum compressive strength of confined concrete core ($f_{max}$), In addition to, the study of the effect of aspect-ratio and length-width ratio on the yield stress of steel tubes ( $f_{sy}$) under biaxial state of stress in CFT columns and the effect of these two factors on the ultimate load carrying capacity of axially loaded CFT/LACFT columns.

Equivalent reinforcement isotropic model for fracture investigation of orthotropic materials

  • Fakoor, Mahdi;Rafiee, Roham;Zare, Shahab
    • Steel and Composite Structures
    • /
    • v.30 no.1
    • /
    • pp.1-12
    • /
    • 2019
  • In this research, an efficient mixed mode I/II fracture criterion is developed for fracture investigation of orthotropic materials wherein crack is placed along the fibers. This criterion is developed based on extension of well-known Maximum Tensile Stress (MTS) criterion in conjunction with a novel material model titled as Equivalent Reinforced Isotropic Model (ERIM). In this model, orthotropic material is replaced with an isotropic matrix reinforced with fibers. A comparison between available experimental observations and theoretical estimation implies on capability of developed criterion for predicting both crack propagation direction and fracture instance, wherein the achieved fracture limit curves are also compatible with fracture mechanism of orthotic materials. It is also shown that unlike isotropic materials, fracture toughness of orthotic materials in mode $I(K)_{IC}{\mid})$ cannot be introduced as the maximum load bearing capacity and thus new fracture mechanics property, named here as maximum orthotropic fracture toughness in mode $I(K_{IC}{\mid}^{ortho}_{max})$ is defined. Optimum angle between crack and fiber direction for maximum load bearing in orthotropic materials is also defined.

Axial compression performance of basalt-fiber-reinforced recycled-concrete-filled square steel tubular stub column

  • Zhang, Xianggang;Gao, Xiang;Wang, Xingguo;Meng, Ercong;Wang, Fang
    • Advances in concrete construction
    • /
    • v.10 no.6
    • /
    • pp.559-571
    • /
    • 2020
  • This study aimed to inspect the axial compression mechanical performance of basalt-fiber-reinforced recycled - concrete (BFRRC)-filled square steel tubular stub column. The replacement ratio of recycled coarse aggregate (RCA) and the basalt fiber (BF) dosage were used as variation parameters, and the axial compression performance tests of 15 BFRRC-filled square steel tubular stub column specimens were conducted. The failure mode and the load-displacement/strain curve of the specimen were measured. The working process of the BFRRC-filled square steel tubular stub column was divided into three stages, namely, elastic-elastoplasticity, sudden drawdown, and plasticity. The influence of the design parameters on the peak bearing capacity, energy dissipation performance, and other axial compression performance indexes was discussed. A mathematical model of segmental stiffness degradation was proposed on the basis of the degradation law of combined secant-stiffness under axial compression. The full-process curve equation of axial compressive stress-strain was proposed by introducing the influencing factors, including the RCA replacement ratio and the BF dosage, and the calculated curve agreed well with the test-measured curve.

Experimental Study and Confinement Analysis on RC Stub Columns Strengthened with Circular CFST Under Axial Load

  • Liang, Hongjun;Lu, Yiyan;Hu, Jiyue;Xue, Jifeng
    • International journal of steel structures
    • /
    • v.18 no.5
    • /
    • pp.1577-1588
    • /
    • 2018
  • As the excellent mechanical performance and easy construction of concrete filled steel tubes (CFST) composite structure, it has the potential to be used to strengthen RC pier columns. Therefore, tests were conducted on 2 reinforcement concrete (RC) stub columns and 9 RC columns strengthened with circular CFST under axial loading. The test results show that the circular CFST strengthening method is effective since the mean bearing capacity of the RC columns is increased at least 3.69 times and the ductility index is significantly improved more than 30%. One of the reasons for enhancement is obvious confinement provided by steel tube besides the additional bearing capacity supplied by the strengthening materials. From the analysis of the enhancement ratio, the strengthening structure has at least an extra 20% amplification except for taking full advantage of the strength of the strengthening material. Through the analysis of confining stress provided by steel tube and the stress-strain relationship of confined concrete, it is found that the strength of the core concrete can be increased by 21-33% and the ultimate strain can be enhanced to beyond $15,000{\mu}{\varepsilon}$.

Cyclic loading test of abnormal joints in SRC frame-bent main building structure

  • Wang, Bo;Cao, Guorong;Yang, Ke;Dai, Huijuan;Qin, Chaogang
    • Earthquakes and Structures
    • /
    • v.20 no.4
    • /
    • pp.417-430
    • /
    • 2021
  • Due to functional requirements, SRC column-RC beam abnormal joints with characteristics of strong beam weak column, variable column section, unequal beam height and staggered height exist in the Steel reinforced concrete (SRC) frame-bent main building structure of thermal power plant (TPP). This paper presents the experimental results of these abnormal joints through cyclic loading tests on five specimens with scaling factor of 1/5. The staggered height and whether adding H-shaped steel in beam or not were changing parameters of specimens. The failure patterns, bearing capacity, energy dissipation and ductile performance were analyzed. In addition, the stress mechanism of the abnormal joint was discussed based on the diagonal strut model. The research results showed that the abnormal exterior joints occurred shear failure and column end hinge flexural failure; reducing beam height through adding H-shaped steel in the beam of abnormal exterior joint could improve the crack resistance and ductility; the abnormal interior joints with different staggered heights occurred column ends flexural failure; the joint with larger staggered height had the higher bearing capacity and stiffness, but lower ductility. The concrete compression strut mechanism is still applicable to the abnormal joints in TPP, but it is affected by the abnormal characteristics.

Analysis on load-bearing contact characteristics of face gear tooth surface wear with installation errors

  • Fan Zhang;Xian-long Peng
    • Computers and Concrete
    • /
    • v.31 no.2
    • /
    • pp.163-171
    • /
    • 2023
  • Face gear transmission is widely used in aerospace shunt-confluence transmission system. Tooth wear is one of the main factors affecting its bearing transmission performance. Furthermore, the installation errors of face gear are inevitable. In order to study the wear mechanism of face gear tooth surface with installation errors, based on tooth contact analysis numerical method and Archard wear theory, the UMESHMOTION subroutine in ABAQUS is developed.Combining with Arbitrary Lagrangian-Eulerian adaptive mesh technology, the finite element mesh wear model of abraded face gear pair is established.The preprocessing conditions are set to generate the inp files.Then,the inp files for each corner are imported and batch processed in ABAQUS.The loading tooth contact problem at each rotation angle is solved and the load distribution coefficient among gear tooth, tooth root bending stress, tooth surface contact stress and loaded transmission error are obtained. Results show that the tooth root wear is the most serious and the wear at the pitch cone is close to 0.The wear law of tooth surface along tooth width direction is convex parabola and the wear law along tooth height direction is concave parabola.

Prediction of End Bearing Capacity for Pre-Bored Steel Pipe Piles Using Instrumented Spt Rods (SPT 에너지효율 측정 롯드를 이용한 매입말뚝의 선단지지력 예측)

  • Nam, Moon S.;Park, Young-Ho;Park, Yong-Seok
    • Journal of the Korean Geotechnical Society
    • /
    • v.29 no.12
    • /
    • pp.105-111
    • /
    • 2013
  • The standard penetration test (SPT) has been widely used because of its usability, economy, and many correlations with soil properties among other factors. In SPT, hammer energy is an important factor to evaluate and calibrate N values. To measure hammer energy, an instrumented SPT rod was developed considering that stress waves transferring on rods during SPT driving are the same as stress waves transferring on piles due to pile driving. Using this idea, an instrumented SPT rod with a pile driving analyzer was applied as a pile capacity prediction tool in this study. In order to evaluate this method, SPT and dynamic cone tests with the instrumented SPT rod were conducted and also 2 pile load tests were performed on pre-bored steel pipe piles at the same test site. End bearings were predicted by CAPWAP analysis on force and velocity waves from dynamic cone penetration tests and SPT. Comparing these predicted end bearings with static pile load tests, a new prediction method of the end bearing capacity using the instrumented SPT rod was proposed.

Numerical Analysis for Evaluation of Bearing Capacity on Soft Ground with Geotextile (Geotextile이 포설된 연약지반 지지력 평가를 위한 수치해석 비교분석)

  • Chae, Yu-Mi;Kim, Jae-Hong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.40 no.2
    • /
    • pp.217-223
    • /
    • 2020
  • As construction work on soft ground increases, many researchers have studied to secure the stability of trafficability with interest in construction safety accidents due to reinforcement work. Although the stability of soft ground is evaluated based on the allowable bearing capacity of theoretical equations proposed in the literature such as Yamanouchi and Meyerhof formulas, further numerical verification also requires comparison of the stress increase (Δσz) and deformation of the distributed contact pressure on the soft ground. In this study, the deformation of the soft ground is compared with the increasing the seam tensile strength of geotextile using the finite element analysis program, and the stress increase is investigated by variation of the distributed contact pressure by appling input data of case study.

Optimized design for perforated plates with quasi-square hole by grey wolf optimizer

  • Chaleshtari, Mohammad H. Bayati;Jafari, Mohammad
    • Structural Engineering and Mechanics
    • /
    • v.63 no.3
    • /
    • pp.269-280
    • /
    • 2017
  • One major concern that has occupied the mind of the designers is a structural failure as result of stress concentration in the geometrical discontinuities. Understanding the effective parameters contribute to stress concentration and proper selection of these parameters enables the designer get to a reliable design. In the analysis of perforated isotropic and orthotropic plates, the effective parameters on stress distribution around holes include load angle, curvature radius of the corner of the hole, hole orientation and fiber angle for orthotropic materials. This present paper tries to examine the possible effects of these parameters on stress analysis of infinite perforated plates with central quasi-square hole applying grey wolf optimizer (GWO) inspired by the particular leadership hierarchy and hunting behavior of grey wolves in nature, and also the present study tries to introduce general optimum parameters in order to achieve the minimum amount of stress concentration around this type of hole on isotropic and orthotropic plates. The advantages of grey wolf optimizer are stout, flexible, simple, and easy to be enforced. The used analytical solution is the expansion of Lekhnitskii's solution method. Lekhnitskii applied this method for the stress analysis of anisotropic plates containing circular and elliptical holes. Finite element numerical solution is employed to examine the results of present analytical solution. Results represent that by selecting the aforementioned parameters properly, fewer amounts of stress could be achieved around the hole leading to an increase in load-bearing capacity of the structure.

A Study on the Damage of the Three Storied Stone Pagoda of Bulguksa Temple in GyeongJu (경주 불국사 삼층석탑(석가탑) 파손원인에 관한 연구)

  • Ji, Sung-Jin
    • Journal of architectural history
    • /
    • v.22 no.6
    • /
    • pp.47-58
    • /
    • 2013
  • The purpose of this study is to analyze the cause of damage to the three storied stone pagoda of Bulguksa temple in GyeongJu. This report is attempted to making reinforcement and conservation plan through investigating and analyzing the cause of damage to that. The damage is caused by occurring of stress, degrading of stone strength, changing of underground soil structure, natural disasters and so on. Compressive stress, shear stress, bending stress and lateral pressure affected to the pagoda since built up. Ultrasonic examination data tells the strength of the stone. According to this result, strength of the stereobate stone materials is enough to support the weight of the upper ones. But we could found many other factors of the damage could consider, for example the problems occurred on building the pagoda construction and the weakness of the stone material(soft rock). And many environmental factors being changed in soil structure(subsidence of soil and degradation of bearing power of soil and freezing and melting of soil) can be seen as the cause of the damage. Natural disasters like earthquake, lightning and heavy rain were also thought to give direct impact to the damage. At last Concentration of compressive stress caused the crack and exfoliation on the stone materials and shear stress, bending stress and lateral pressure were main causes of the stereobate stone materials shearing.