• Title/Summary/Keyword: bearing characteristic

Search Result 334, Processing Time 0.025 seconds

Network Modeling on Track Circuit and Analysis of Resistance Characteristic on Wood Sleeper (궤도회로의 단자망 모델링 및 목침목 저항 특성 해석)

  • Yoon, In-Mo;Kim, Min-Seok;Ko, Young-Hwan;Lee, Jong-Woo
    • Journal of the Korean Society for Railway
    • /
    • v.13 no.6
    • /
    • pp.565-569
    • /
    • 2010
  • Sleepers perform bearing rails and are underneath rails. Therefore, the current and voltage of rails are related to the resistance of sleepers. In case that the resistance of sleepers are low, operation problems of relays in tr ack circuits are occur because of flowing leakage current through sleepers. So the condition that the track circuit is always occupied by a train is kept. Currently, the creosote has been used in wood sleepers due to prevention against putrefaction. After a long time, the material is changeable to the chemistry material bases on carbon dioxide or carbon. So, the insulation resistance of wood sleepers is lower than the initial insulation resistance. In case of effecting wood sleepers as conductors, amplitude of the current and voltage on rails is decreased. This phenomenon causes that a train does not receive signals. In this paper, four-network model on the track circuit including the insulation resistance of sleepers is suggested. Also, the standard value of the resistance in straight section is proposed in the wood sleeper.

Analysis of Dynamic Characteristics of Water Injection Pump (물 분사 펌프의 동특성 분석)

  • Lee, Jong Myeong;Lee, Jeong Hoon;Ha, Jeong Min;Ahn, Byung Hyun;Kim, Won Cheol;Choi, Byeong Keun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.12
    • /
    • pp.1483-1487
    • /
    • 2013
  • Water injection pump outputs oil with high pressure during this process, seawater is injected into the well to recover the well pressure and maintain high productivity. A water injection pump has high productivity, and therefore, it serves as a key piece of equipment in marine plants. In this light, water injection pumps are being studied widely in industry. In this study, the rotor dynamics is analyzed to determine the natural frequency according to the bearing stiffness and operation speed change. This study aims to establish the pump reliability through critical speed, stability, and unbalance response analysis.

Feasibility Mapping of Groundwater Yield Characteristics using Weight of Evidence Technique based on GIS in the Pocheon Area (GIS 기반 Weight of Evidence 기법을 이용한 포천 지역의 지하수 산출특성 예측도 작성)

  • Heo Seon-Hee;Lee Kiwon
    • Korean Journal of Remote Sensing
    • /
    • v.21 no.6
    • /
    • pp.493-503
    • /
    • 2005
  • In this study, the weight of evidence(WofE) technique based on GIS was applied to spatially estimate the groundwater yield characteristics at the Pocheon area In Gyunggi-do. The groundwater preservation depends on many hydro-geologic factors that include hydrologic data, land-use data, topographic data, geological map and other natural materials collected at the site, even with man-made things. All these data can be digitally processed and managed by GIS database. In the applied technique of WofE, the prior probabilities were estimated as the factors that affect the yield on lineament, geology, drainage pattern or river system density, landuse and soil. We calculated the value of the weight values, W+ and W-, of each factor and estimated the contrast value of it. Results by the groundwater yield characteristic computation using this scheme were presented feasibility map in the form of the posterior probability to the consideration of in-situ samples. It is concluded that this technique is regarded as one of the effective techniques for the feasibility mapping related to the estimation of groundwater-bearing potential zones and its spatial pattern.

Shear resistance characteristic and ductility of Y-type perfobond rib shear connector

  • Kim, Sang-Hyo;Park, Se-Jun;Heo, Won-Ho;Jung, Chi-Young
    • Steel and Composite Structures
    • /
    • v.18 no.2
    • /
    • pp.497-517
    • /
    • 2015
  • This study evaluates behavior of the Y-type perfobond rib shear connector proposed by Kim et al. (2013). In addition, an empirical shear resistance formula is developed based on push-out tests. Various types of the proposed Y-type perfobond rib shear connectors are examined to evaluate the effects of design variables such as concrete strength, number of transverse rebars, and thickness of rib. It is verified that higher concrete strength increases shear resistance but decreases ductility. Placing transverse rebars significantly increases both the shear resistance and ductility. As the thickness of the ribs increases, the shear resistance increases but the ductility decreases. The experimental results indicate that a Y-type perfobond rib shear connector has higher shear resistance and ductility than the conventional stud shear connector. The effects of the end bearing resistance, resistance by transverse rebars, concrete dowel resistance by holes, and concrete dowel resistance by Y-shape ribs on the shear resistance are estimated empirically based on the push-out test results and the additional push-out test results by Kim et al. (2013). An empirical shear resistance formula is suggested to estimate the shear resistance of a Y-type perfobond shear connector for design purposes. The newly developed shear resistance formula is in reasonable agreement with the experimental results because the average ratio of measured shear resistance to estimated shear resistance is 1.024.

Development of the Extracting Technique of the Character Parameter for the Vibration Monitoring System in High Voltage Motor (고압전동기용 진동 감시 시스템을 위한 특징 파라미터 추출기법 개발)

  • Lee, Dal-Ho;Park, Jung-Cheul
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.12 no.4
    • /
    • pp.349-358
    • /
    • 2019
  • This paper aimed at collecting sensor signals to extract characteristic parameter of the rotor. A vibration test rig has been developed to perform model tests. Signal characteristics were analyzed when driving normally. Envelope FFT Analysis is used to extract vibration components caused by periodic impacts from other vibration factors. Signal analysis was performed when load changes were given to speed sensors and vibration test rigs that show low frequency characteristics of the rotor and signal analysis according to rotational speed. The acceleration signal measured in the bearing housing has a small amplitude and produces only the rotational frequency component and harmonic component of the motor. As the number of rotations increases, the amplitude of acceleration can be seen. As the rotational speed increases, it can be seen that there is a difference in the shape of the original data and compared with the acceleration FFT graph, it can be seen that the noise is strong at low frequencies and the corresponding rotational frequency components are clearly represented. It can be seen that changing the load does not increase the main rotational frequency component.

Evaluation of Resistance Spot Weld Interfacial Fractures in Tensile-Shear Tests of TRIP 590 Steels (저항 점 용접된 TRIP590강의 계면파단특성에 관한 평가)

  • Park, Sang-Soon;Lee, Sang-Min;Cho, Yongjoon;Kang, Nam-Hyun;Yu, Ji-Hun;Kim, Young-Seok;Park, Yeong-Do
    • Korean Journal of Metals and Materials
    • /
    • v.46 no.10
    • /
    • pp.672-682
    • /
    • 2008
  • The resistance spot welding of TRIP590 steels was investigated to enhance understanding of weld fracture during tensile-shear strength (TSS) test. The main failure modes for spot welds of TRIP590 steels were nugget pullout and interfacial fracture. The peak load to cause a weld interfacial failure was found to be related to fracture toughness of the weld and the weld diameter. Although interfacial fracture occurred in the samples, the load carrying capacity of the weld was high and not significantly affected by the fracture mode. Substantial part of the weld exhibits the characteristic dimple (or elongated dimple) fractures on interfacial fractured surface, in spite of the high hardness values associated with the martensite microstructures. The high load-bearing ability of the weld is directly associated with the area of ductile fracture occurred in weld. Therefore, the judgment of the quality of resistance spot welds in TRIP590 steels, the load carrying capacity of the weld should be considered as an important factor than fracture mode.

Three Dimensional Numerical Analysis of Piled Raft on Soft Clay (연약지반에 시공된 Piled Raft 기초의 3차원 거동 분석)

  • Lee, Jin-Hyung;Jeong, Sang-Seom
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.5
    • /
    • pp.63-75
    • /
    • 2007
  • Piled raft is known to be an unfavorable foundation type in soft clay because foundation is associated with both excessive settlement and bearing capacity failure problems. Despite these reasons, in recent decades, an increasing number of structures have been constructed over soft clay area, piled raft concepts arouse interest as the foundation of structures on soft clay area becomes popular. This study described 3 dimensional behavior of piled raft on soft clay based on a numerical study using 3D finite element method. A series of numerical analyses were performed for a various pile lengths and the pile configurations on the raft were subjected to vertical uniform or point loading. Based on the results of the parametric study, comparisons were made among the effect of loading type, various pile length and configurations, and the load-settlement behavior and load sharing characteristics of piled raft were also evaluated. From the results, the characteristic of piled raft on soft clay was examined.

Study on the Rational Analysis Methods and Seismic Responses of Curved Bridges (곡선교의 합리적인 지진해석기법 및 지진응답특성에 관한 연구)

  • Kim, Sang Hyo;Cho, Kwang Il;Park, Byung Kyu
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.6A
    • /
    • pp.955-963
    • /
    • 2006
  • As the geometrical characteristic of the curved bridge, the seismic response of curved bridges are different from straight bridges. This study analyzed the seismic response of the curved bridges considering diverse factors such as radius of curvature, direction of seismic load and support condition. The improved simple modeling of the curved bridge for seismic analysis is proposed, and it is compared with the detail modeling in order to verify the simple modeling. Three simply supported curved bridges and six 3-span continuous bridges are selected for seismic analysis. The behavior of curved bridges are evaluated in terms of the displacement and the force at supports and piers under seismic load applied in various directions. The results of this study show that upward reaction force may appear in simply supported curved bridge under seismic load. And continuous curved bridges are affected by the direction of the seismic load.

A Study on Methodology for Improvement of Bond of FRP reinforcement to Concrete (초단유리섬유(milled glass fibers)와 에폭시 혼합물을 이용한 FRP 보강근 표면성형기법 연구)

  • Moon, Do-Young;Sim, Jongsung;Oh, Hongseob
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.4A
    • /
    • pp.775-785
    • /
    • 2006
  • This study focused on the development of surface deformations of GFRP rebars with a better bond characteristic for reinforcing concrete, and simultaneously, of GFRP rebars with more simple and economic production process. This research paper describes a development and bond performance of GFRP rebar with molded deformations, which is composed of polymer resin and milled glass fiber. To determine proper mix ration of milled fibers, material test of hardened epoxy and pullout tests of GFRP rebar with various mix ratio were conducted. The test results indicate that the new strategy of using a mixture of epoxy resin and milled fiber could be successfully applied to a surface structure of GFRP rebar to enhance bond with concrete. The bearing resistance of the ribs was further enhanced by the milled fibers at mechanical and environmental loading state.

Difference analysis of the collapse behaviors of the single-story beam-column assembly and multi-story planar frame

  • Zheng Tan;Wei-Hui Zhong;Bao Meng;Xing-You Yao;Yu-Hui Zheng;Yao Gao;Shi-Chao Duan
    • Steel and Composite Structures
    • /
    • v.50 no.3
    • /
    • pp.265-280
    • /
    • 2024
  • The collapse behavior observed in single-story beam-column assembly (SSBCA) do not accurately represent the actual overall stress characteristic of multi-story frame structure (MSFS) under column loss scenario owing to ignoring the interaction action among different stories, leading to a disconnection between the anti-collapse behaviors of "components" and "overall structures", that is, the anti-collapse performance of frame structures with two different structural scales has not yet formed a combined force. This paper conducts a numerical and theoretical study to explore the difference of the collapse behaviors of the SSBCA and MSFS, and further to reveal the internal force relationships and boundary constraints at beam ends of models SSBCA and MSFS. Based on the previous experimental tests, the corresponding refined numerical simulation models were established and verified, and comparative analysis on the resistant-collapse performance was carried out, based on the validated modeling methods with considering the actual boundary constraints, and the results illustrates that the collapse behaviors of the SSBCA and MSFS is not a simple multiple relationship. Through numerical simulation and theoretical analysis, the development laws of internal force in each story beam under different boundary constraints was clarified, and the coupling relationship between the bending moment at the most unfavorable section and axial force in the composite beam of different stories of multi story frames with weld cover-plated flange connections was obtained. In addition, considering the effect of the yield performance of adjacent columns on the anti-collapse bearing capacities of the SSBCA and MSFS during the large deformation stages, the calculation formula for the equivalent axial stiffness at the beam ends of each story were provided.