Network Modeling on Track Circuit and Analysis of Resistance Characteristic on Wood Sleeper

궤도회로의 단자망 모델링 및 목침목 저항 특성 해석

  • 윤인모 (호남대학교 광산캠퍼스 정보통신대학) ;
  • 김민석 (서울과학기술대학교 철도전문대학원 철도전기신호공학과) ;
  • 고영환 (서울메트로 신호팀) ;
  • 이종우 (서울과학기술대학교 철도전기신호공학과)
  • Received : 2010.09.10
  • Accepted : 2010.11.25
  • Published : 2010.12.06

Abstract

Sleepers perform bearing rails and are underneath rails. Therefore, the current and voltage of rails are related to the resistance of sleepers. In case that the resistance of sleepers are low, operation problems of relays in tr ack circuits are occur because of flowing leakage current through sleepers. So the condition that the track circuit is always occupied by a train is kept. Currently, the creosote has been used in wood sleepers due to prevention against putrefaction. After a long time, the material is changeable to the chemistry material bases on carbon dioxide or carbon. So, the insulation resistance of wood sleepers is lower than the initial insulation resistance. In case of effecting wood sleepers as conductors, amplitude of the current and voltage on rails is decreased. This phenomenon causes that a train does not receive signals. In this paper, four-network model on the track circuit including the insulation resistance of sleepers is suggested. Also, the standard value of the resistance in straight section is proposed in the wood sleeper.

레일 밑에 놓이는 침목은 레일을 지지해 주는 역할을 한다. 침목의 저항은 레일의 전류 및 전압과 밀접한 관계가 있다. 침목의 저항이 낮으면 레일 사이에 침목을 통해 폐회로가 형성되어 레일의 전류 및 전압이 감소한다. 이로 인해 궤도 계전기 동작에 문제가 발생하여 열차가 항상 궤도를 점유하게 된 상태로 유지된다. 현재 도시철도 및 광역철도에서 사용하고 있는 목침목은 산화작용을 방지하기 위해 방부제를 사용한다. 방부제 성분 중에 크레오소트가 있는데 이 물질은 탄소를 기저로 하는 화학물질로 변화된다. 도체적인 성질을 가지고 있는 탄소는 목침목의 저항에 영향을 미친다. 크레오소트의 화학작용에 의해 발생한 탄소로 인해 목침목이 도체로써 작용하면 침목 간격마다 레일 사이에 폐회로가 형성되어 열차의 단락 전류 및 궤도회로 종단의 전압이 감소하여 궤도 계전기가 오동작이 발생한다. 본 논문에서는 목침목의 저항을 포함하는 궤도회로 4단자망 모델을 제시하였다. 또한 직선구간에서 목침목의 기준 저항 값을 제시하였다.

Keywords

References

  1. M.S. Kim (2009) A Study on Coupling Coefficient between Rail and Reinforcing Bars in Concrete Slab Track, Journal of the Korean Society for Railway, 12(3), pp. 405-411.
  2. S.C. Suh (2009) Review and Analysis in PF Track Circuit, Seoul Metropolitan Rapid Transit Cooperation, pp. 5-8.
  3. D.H. Lee (2005) Prevention of Splitting of Wood Sleepers and Its Reuse, Korea Forest Research Institute, pp. 22-25.
  4. R. Johm Hill (1993) Rail Track Distributed Transmission Line Impedance and Admittance: Theoretical Modeling and Experimental Results, IEEE Trans, 42(2), pp. 225-241.
  5. K.B. Park (2006) A Internal Signal Modeling for a Defect Diagnosis of Track Circuit on HSL, in Proceedings of the 2006 Autumn Conference for Railway, Journal of the Korea Society of Railway, pp. 32-38.
  6. S.A. Schelkunoff (1937) Transmission Theory of Plane Electromagnetic Waves, IRE., 25, pp. 1457-1492. https://doi.org/10.1109/JRPROC.1937.228764
  7. J.K. Um (2004) A Mathematical Model for the Track Circuit of the Korea High Speed Line, in Proceedings of the 2004 Spring Conference for Railway, Journal of the Korea Society of Railway, pp. 7-13.
  8. W.H. Hayt (2002) Engineering Circuit Analysis, McGraw-Hill, Sixth Edition, pp. 621-635.
  9. D.K. Cheng (2002) Fundamentals of Engineering Electromagnetics, Pearson Education, pp. 315-319.
  10. M.S. Kim (2009) A Study on the Location of Compensation Capacitor and Capacitance in the Concrete Slab Track, in Proceedings of the 2009 Autumn Conference for Railway, Journal of the Korea Society of Railway, pp. 879-891.
  11. W.H. Kwak (2006) A Study on the Improvement of Track Circuit Measurement Equipment for High Speed Line, in Proceedings of the 2006 Autumn Conference for Railway, Journal of the Korea Society of Railway, pp. 22-27.
  12. James W. Nilsson (2007) Electric Circuits, Prentice Hall, pp. 810-813.
  13. K.B. Park (2007) A Study on the Improvement for a Defect Diagnosis of Track Circuit on HSL, in Proceedings of the 2007 Autumn Conference for Railway, Journal of the Korea Society of Railway, pp. 1656-1664.
  14. Siemens (2005) Assembly for Track Circuit Measurement Test Track, pp. 63-70.
  15. Seoul Metro (2009) Test Results for PF Track Circuit, pp. 5-6.