• Title/Summary/Keyword: bearing characteristic

Search Result 334, Processing Time 0.029 seconds

Nonlinear analysis and design of concrete-filled dual steel tubular columns under axial loading

  • Wan, Cheng-Yong;Zha, Xiao-Xiong
    • Steel and Composite Structures
    • /
    • v.20 no.3
    • /
    • pp.571-597
    • /
    • 2016
  • A new unified design formula for calculating the composite compressive strength of the axially loaded circular concrete filled double steel tubular (CFDST) short and slender columns is presented in this paper. The formula is obtained from the analytic solution by using the limit equilibrium theory, the cylinder theory and the "Unified theory" under axial compression. Furthermore, the stability factor of CFDST slender columns is derived on the basis of the Perry-Robertson formula. This paper also reports the results of experiments and finite element analysis carried out on concrete filled double steel tubular columns, where the tested specimens include short and slender columns with different steel ratio and yield strength of inner tube; a new constitutive model for the concrete confined by both the outer and inner steel tube is proposed and incorporated in the finite element model developed. The comparisons among the finite element results, experimental results, and theoretical predictions show a good agreement in predicting the behavior and strength of the concrete filled steel tubular (CFST) columns with or without inner steel tubes. An important characteristic of the new formulas is that they provide a unified formulation for both the plain CFST and CFDST columns relating to the compressive strength or the stability bearing capacity and a set of design parameters.

Demand response modification factor for the investigation of inelastic response of base isolated structures

  • Cheraghi, Rashid Eddin;Izadifarda, Ramezan Ali
    • Earthquakes and Structures
    • /
    • v.5 no.1
    • /
    • pp.23-48
    • /
    • 2013
  • In this study, the effect of flexibility of superstructures and nonlinear characteristics of LRB (Lead Rubber Bearing) isolator on inelastic response of base isolated structures is investigated. To demonstrate the intensity of damage in superstructures, demand response modification factor without the consideration of damping reduction factor, demand RI, is used and the N2 method is applied to compute this factor. To evaluate the influence of superstructure flexibility on inelastic response of base isolated structures, different steel intermediate moment resisting frames with different heights have been investigated. In lead rubber bearing, the rubber provides flexibility and the lead is the source of damping; variations of aforementioned characteristics are also investigated on inelastic response of superstructures. It is observed that an increase in height of superstructure leads to higher value of demand RI till 4-story frame but afterward this factor remains constant; in other words, an increase in height until 4-story frame causes more damage in the superstructure but after that superstructure's damage is equal to the 4-story frame's. The results demonstrate that the low value of second stiffness (rubber stiffness in LRBs) tends to show a significant decrease in demand RI. Increase in value of characteristic strength (yield strength of the lead in LRBs) leads to decrease in the demand RI.

An Experimental Study on the Strength of Two Serial Bolt-Fastened Composite Joints under Elevated Temperature and Humid Condition (고온다습 조건($82.2^{\circ}C$)에서 2열 볼트 체결 복합재 조인트의 강도에 관한 실험적 연구)

  • Kim, Hyo-Jin
    • Composites Research
    • /
    • v.22 no.5
    • /
    • pp.30-36
    • /
    • 2009
  • The failure strengths and modes in carbon fiber reinforced polymeric composites, with two serial bolt-fastened composite joints, were investigated to evaluate the typical joint configurations of composite components. The parametric studies were performed experimentally at room temperature dry and elevated temperature wet, $82.2^{\circ}C$ on several different laminate configurations. Based on the experimental data presented, two basic load-displacements curves are observed. Each failure mode has the characteristic curve. It is showed that the bearing failure mode occurs in elevated temperature wet condition. It is analysed that the strength of bearing failure mode is not highly depending on the effective modulus of specimen. The failure strength at elevated temperature wet is decreased by the cause of interfacial deterioration between fiber and matrix with moisture absorption.

Characteristic of Friction on Texturing Bearing Steel with Ultrasonic Hole Machine

  • Shin, Mijung;H., Angga Senoaji;Kwon, SoonHong;Chung, SungWon;Kwon, SoonGoo;Park, JongMin;Kim, JongSoon;Choi, WonSik
    • Tribology and Lubricants
    • /
    • v.31 no.1
    • /
    • pp.21-27
    • /
    • 2015
  • We carry out experiments to characterize textured bearing steel with varying hole density and depth. Textured surface is believed to reduce the friction coefficient, and improve performance and wearing caused by third-body contact. We employ three lubrication regime conditions based on the Stribeck curve: boundary lubrication, mixed lubrication, and hydrodynamic lubrication. Ultrasonic machining is an untraditional machining method wherein abrasive grit particles are used. The hammering process on the work piece surface by abrasive provides the desired form. In this study, we create multi-holes on the bearing steel surface for texturing purposes. Holes are formed by an ultrasonic machine with a diameter of 0.534 mm and a depth of about 2-4 mm, and they are distributed on the contact surface with a density between 1.37-2.23%. The hole density over the surface area is an important factor affecting the friction. We test nine types of textured specimens using four times replication and compare them with the untextured specimen using graphs, as well as photographs taken using a scanning electron microscope. We use Analyzes variant in this experiment to find the correlation between each pair of treatments. Finally, we report the effect of hole density and depth on the friction coefficient.

Paleoenvironmental Factor on the Fossil Woods from the Lower and Upper Coal-bearing Formations of the Janggi Group (Miocene) of Korea (포항 분지 장기층군의 하부 및 상부 함탄층(마이오세)의 화석목재에 나타난 고환경 요인)

  • Park, No-Tae;Kim, Jong-Heon
    • Journal of the Korean earth science society
    • /
    • v.31 no.6
    • /
    • pp.573-583
    • /
    • 2010
  • A paleobotanical study of the fossil woods has been carried out from the Tertiary Janggi Group, Pohang Basin. Three species belonging to three genera of Ulmus sp., Prunus sp., and Acer sp. were identified from the Lower Coalbearing Formation, and two species of two genera of Taxodioxylon sp. and Fagus hondoensis (Watari) from the Upper Coal-bearing Formation. As our specimens are mostly poorly preserved, it is difficult to give clear specific names, but mostly are all characteristic constitutional elements of the Miocene fossil woods in Korea. The values of mean sensitivity measured from the fossil woods of Lower and Upper Coal-bearing Formations are 0.367 and 0.370 respectively, but they are more than 0.30. Based on the present two data mentioned above, it stands to reason that there were many changes in the water supply to the roots of the woods or having influence to some degree each year because of the seasonal changes in rainfall.

A Study on the Effective Stress of RC Beams in Applying the Adhesion Reinforced and the External Post-Tensioning Method (RC보의 부착보강공법과 외부강선보강공법의 유효응력에 관한 연구)

  • Park, Yong-Gul;Choi, Jung-Youl;Choi, Jun-Hyeok
    • Journal of the Korean Society for Railway
    • /
    • v.10 no.2 s.39
    • /
    • pp.186-194
    • /
    • 2007
  • This study was performed to compare the load-carrying capacities of the reinforced concrete structure between the carbon fiber adhesion reinforcement method and the external post-tensioning method and further estimate the effective stress of the reinforced material by analyzing the experimental reinforcing effect of each method and the behavior resulting from each method. As a result, it was found out that the effective stress of the carbon fiber reinforcement according to the carbon fiber adhesion reinforcement method had an unexpected value, and also, bearing of the stress was found to be far from sharing thereof. That is to say, while the carbon fiber was bearing the whole stress to some limits, it got to be momentarily ruptured as soon as it went beyond such limits. On the other hand, the external post-tensioning method has the advantage of inducing an initial effective stress by introducing a strain, and thus, it was found that behavior or bearing of the stress was also found to be a solid behavior of the steel wire. This method was also found to be more efficient and excellent than the carbon fiber adhesion reinforcement method in the reinforcing effect or securing the effective stress. Accordingly, we were to discuss the effective stress as comparatively examined, focusing on deriving of the more enhanced reinforcing effect on the basis of the experiment to which the field characteristic is added.

The Failure Standard to Estimate the Behavior and Bearing Capacity for Connected-type Foundation of Transmission Tower in Clay (점토지반에 근입된 송전철탑 연결형 기초의 거동 특성 및 지지력결정을 위한 파괴기준)

  • Kyung, Doo-Hyun;Lee, Jun-Hwan;Paik, Kyu-Ho;Kim, Dae-Hong
    • Journal of the Korean Geotechnical Society
    • /
    • v.27 no.3
    • /
    • pp.27-40
    • /
    • 2011
  • In this study, we performed model lateral load test for connected-type foundations of transmission tower with bar in clay, and proposed failure standard and measuring method to estimate ultimate lateral bearing capacity. For this study, we performed model lateral load tests in Iksan, Jeollabukdo and analyzed load-displacement characteristic of the model. We manufactured model foundation of transmission tower connected with bar and that considered a change of rigidity. We installed various measuring sensors to find general foundation behavior. From the test results, we measured, compared and analyzed load capacities, and then proposed failure standard to estimate bearing capacity for connecting type foundation.

The Effect of Circulat Hole Size and Distribution on Strength of Braided Composite (브레이드 복합재료의 원공의 크기와 분포가 재료강도에 미치는 영향)

  • Lee, Gyeong-U;Gang, Tae-Jin
    • Korean Journal of Materials Research
    • /
    • v.4 no.3
    • /
    • pp.253-258
    • /
    • 1994
  • The effect of hole size and hole-to-hole distance in the braided and laminated composite was studied in terms of tensile strength, pin bearing strength, and flexural strength of S2-glass fiber braided polyester. The tensile strength reduction with hole size was well fitted with he Whitney and Nuismer's prediction for the laminated composite. The characteristic distance was measured to be about 1.6mm for braided composite and 1.8mm for laminated one. The effect of distance between the centers of two circu lar holes on tensile strength was negligible when the distance between these two holes was larger than 4 times of the diameter of circular hole for both braided and laminated composite. The side effect was diminished when the center of hole was located 3 times farther than the diamet.er of the hole. The pin bearing strengths was decreased with the size of pin hole for both braided and laminated composite.

  • PDF

A Study on Structural Integrity and Dynamic Characteristic of Inertial Load Test Equipment for Performance Test of Railway Vehicle Propulsion Control System (철도차량 추진제어장치 성능시험을 위한 관성부하 시험설비의 구조안전성 및 동특성 평가 연구)

  • Jang, Hyung-Jin;Shin, Kwang-Bok;Lee, Sang-Hoon;Lee, Dae-Bong
    • Journal of the Korean Society for Railway
    • /
    • v.13 no.4
    • /
    • pp.363-370
    • /
    • 2010
  • This paper describes the evaluation of structural integrity and dynamic characteristic of inertial load test equipments for performance test of railway vehicle propulsion control system. The propulsion control system of railway vehicle has to be confirmed of safety and reliability prior to its application. Therefore, inertial load test equipments were designed through theoretical equation for performance test of propulsion control system. The structural analysis of inertial load test equipments was conducted using Ansys v11.0 and the dynamic characteristic was evaluated using Adams. The results showed that the structural integrity of inertial load test equipment was satisfied with a safety factor of 10.2 on the bearing part under combined load. Also, the structural stability of flywheel according to dynamic simulation was secured by the maximum oscillation displacement within 0.83mm.

Thermal Characteristic Analysis of a High-Speed Horizontal Machining Center with Built-in Motor and Linear Motors (내장형 모터와 리니어 모터를 적용한 초고속 수평형 머시닝센터의 열 특성 해석)

  • 김석일;조재완
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2004.04a
    • /
    • pp.416-423
    • /
    • 2004
  • This paper presents the thermal characteristic analysis of a high-speed horizontal machining center with spindle speed of 50,000rpm and feedrate of 120m/fin. The spindle system is designed based on the built-in motor, angular contact ceramic ball bearings, oil-air lubrication and oil-jacket cooling method. The X-axis and Y-axis feeding systems are composed of the linear motors and linear motion guides, and the Z-axis feeding system is composed of the servo-motor, ball screw and linear motion guides. The thermal characteristics such as the temperature distribution, temperature rise, thermal deformation and step response, are estimated based on the finite element model of machining center and the heat generation rates of heat sources related to the machine operation conditions. Especially, the thermal time constant assessed from the step response function is introduced as an index of thermal response characteristics.

  • PDF