• 제목/요약/키워드: beams plates

검색결과 324건 처리시간 0.026초

Analysis of stiffened plates composed by different materials by the boundary element method

  • Fernandes, Gabriela R.;Neto, Joao R.
    • Structural Engineering and Mechanics
    • /
    • 제56권4호
    • /
    • pp.605-623
    • /
    • 2015
  • A formulation of the boundary element method (BEM) based on Kirchhoff's hypothesis to analyse stiffened plates composed by beams and slabs with different materials is proposed. The stiffened plate is modelled by a zoned plate, where different values of thickness, Poisson ration and Young's modulus can be defined for each sub-region. The proposed integral representations can be used to analyze the coupled stretching-bending problem, where the membrane effects are taken into account, or to analyze the bending and stretching problems separately. To solve the domain integrals of the integral representation of in-plane displacements, the beams and slabs domains are discretized into cells where the displacements have to be approximated. As the beams cells nodes are adopted coincident to the elements nodes, new independent values arise only in the slabs domain. Some numerical examples are presented and compared to a wellknown finite element code to show the accuracy of the proposed model.

Hygrothermal effects on the behavior of reinforced-concrete beams strengthened by bonded composite laminate plates

  • Antar, Kamel;Amara, Khaled;Benyoucef, Samir;Bouazza, Mokhtar;Ellali, Mokhtar
    • Structural Engineering and Mechanics
    • /
    • 제69권3호
    • /
    • pp.327-334
    • /
    • 2019
  • The purpose of this paper is to investigate the hygrothermal effects on the behavior of reinforced-concrete beams strengthened by bonded composite laminate plates (${\theta}n/90m)s$. This work is based on a simple theoretical model to estimate the interfacial stresses developed between the concrete beam and the composite with taking into account the hygrothermal effect. Fibre orientation angle effects of number of $90^{\circ}$ layers and effects of plate thickness and length on the distributions of interfacial stress in the concrete beams reinforced with composite plates have also been studied.

Performance of damaged RC continuous beams strengthened by prestressed laminates plate: Impact of mechanical and thermal properties on interfacial stresses

  • Tahar, Hassaine Daouadji;Abderezak, Rabahi;Rabia, Benferhat;Tounsi, Abdelouahed
    • Coupled systems mechanics
    • /
    • 제10권2호
    • /
    • pp.161-184
    • /
    • 2021
  • Strengthening of reinforced concrete beams with externally bonded fiber reinforced polymer plates/sheets technique has become widespread in the last two decades. Although a great deal of research has been conducted on simply supported RC beams, a few studies have been carried out on continuous beams strengthened with FRP composites. This paper presents a simple uniaxial nonlinear analytical model that is able to accurately estimate the load carrying capacity and the behaviour of damaged RC continuous beams flexural strengthened with externally bonded prestressed composite plates on both of the upper and lower fibers, taking into account the thermal load. The model is based on equilibrium and deformations compatibility requirements in and all parts of the strengthened beam, i.e., the damaged concrete beam, the FRP plate and the adhesive layer. The flexural analysis results and analytical predictions for the prestressed composite strengthened damaged RC continuous beams were compared and showed very good agreement in terms of the debonding load, yield load, and ultimate load. The use of composite materials increased the ultimate load capacity compared with the non strengthened beams. The major objective of the current model is to help engineers' model FRP strengthened RC continuous beams in a simple manner. Finally, this research is helpful for the understanding on mechanical behaviour of the interface and design of the FRP-damaged RC hybrid structures.

An investigation of anchorage to the edge of steel plates bonded to RC structures

  • Kara, M.E.;Firat, F.K.;Sonmez, M.;Karabork, T.
    • Steel and Composite Structures
    • /
    • 제22권1호
    • /
    • pp.25-43
    • /
    • 2016
  • This paper presents the results of an experimental study investigating the effects of anchorage systems used in externally bonded steel plates on the strength and ductility of reinforced concrete structures. In the literature, diagonal steel plates bonded to frames were designed to be more flexible than the connections to eliminate the possible effect of the connection flexibility. However, to better evaluate the performance of the strengthened structures, the strength and behavior of connections should also be considered. The purpose of this study was to experimentally investigate the effects of different connection types of steel plates bonded to the frame using anchors on the strengthened RC structures. For this purpose, eleven specimens were designed to simulate the interior and exterior connection behavior. Two of these were used as the control beams and remaining nine for the investigation of the functionality of the end steel plates. Experimental results show that the load carrying capacity of the strengthened beams is directly related to the connection types of the steel plates. For the interior connections, L-shaped end plates that were strengthened using steel anchors must have adequate stiffness to prevent its shape. While, for the exterior connections, the connection with three anchors carried more load than the other exterior connections.

CFRP Plate로 보강된 철근콘크리트 보의 정적 및 피로 거동 특성 (Static and Fatigue Behavior Characteristics of Reinforced Concrete Beams Strengthened with CFRP Plate)

  • 김광수;김진율;김성후;박선규
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제12권4호
    • /
    • pp.141-148
    • /
    • 2008
  • 최근 건설 산업에서 CFRP는 재료적 장점들 때문에 구조물의 보강재로서 많이 사용되어 지고 있다. 본 논문에서 CFRP Plate가 보강된 철근콘크리트 보의 보강 효율과 설계 기초자료를 제공하려 한다. 정적 실험은 실험체의 파괴양상, 보강성능을 평가하였으며, 피로 실험은 처짐, 철근 변형률, CFRP Plate의 변형률을 분석하고, 에너지 소산과 보강성능을 평가하였다. 실험한 결과, 보강량이 증가할수록 단부 박리 파괴를 일으켰다. 그리고, 단부를 보강한 경우는 휨균열로 인한 박리파괴를 나타내는 파괴양상을 보였다. 피로 실험을 통하여 일정한 반복하중 횟수가 되면 처짐, 철근 변형률, CFRP Plate의 변형률 값이 일정한 값으로 수렴하였다. CFRP Plate가 보강된 보는 피로하중에 대해 사용성 확보가 가능했다.

CFRP판으로 보강된 RC 보의 구조거동 해석모델 개발 (Development of the Nonlinear Analysis Model on Flexural Behavior of Reinforced Concrete Beams Strengthened with Prestressed Carbon Fiber-Reinforced Polymer Plates)

  • 우상균;남진원;김장호;변근주
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제12권4호
    • /
    • pp.87-97
    • /
    • 2008
  • 본 연구의 목적은 CFRP판을 다양한 방법으로 보강한 RC보의 휨거동을 실험적으로 비교 분석하고, 프리스트레싱을 도입하여 보강된 콘크리트 구조물의 성능개선 효과와 구조거동을 예측할 수 있는 해석모델을 개발하는 것이다. 이를 위하여 프리스트레싱이 도입된 CFRP판의 부착 및 휨거동 특성을 분석하고, CFRP 및 Epoxy 수지의 거동특성을 규명하였다. 또한 CFRP판의 보강방법과 프리스트레싱 수준 등을 실험변수로 설정하여 콘크리트 보의 휨실험을 수행하고, 개발된 해석모델의 결과와 비교 검증하였다. 연구결과 본 해석기법은 충분한 신뢰도를 가지고 있으므로 CFRP를 사용한 보강설계에 효과적으로 적용이 가능하다고 판단된다.

Modelling the reinforced concrete beams strengthened with GFRP against shear crack

  • Kaya, Mustafa;Yaman, Canberk
    • Computers and Concrete
    • /
    • 제21권2호
    • /
    • pp.127-137
    • /
    • 2018
  • In this study, the behavior of the number of anchorage bolts on the glass-fiber reinforced polymer (GFRP) plates adhered to the surfaces of reinforcing concrete (RC) T-beams was investigated analytically. The analytical results were compared to the test results in term of shear strength, and midpoint displacement of the beam. The modelling of the beams was conducted in ABAQUS/CAE finite element software. The Concrete Damaged Plasticity (CDP) model was used for concrete material modeling, and Classical Metal Plasticity (CMP) model was used for reinforcement material modelling. Model-1 was the reference specimen with enough sufficient shear reinforcement, and Model-2 was the reference specimen having low shear reinforcement. Model-3, Model-4 and Model-5 were the specimens with lower shear reinforcement. These models consist of a single variable which was the number of anchorage bolts implemented to the GFRP plates. The anchorage bolts of 2, 3, and 4 were mutually mounted on each GFRP plates through the beam surfaces for Model-3, Model-4, and Model-5, respectively. It was found that Model-1, Model-3, Model-4 and Model-5 provided results approximately equal to the test results. The results show that the shear strength of the beams increased with increasing of anchorage numbers. While close results were obtained for Model-1, Model-3, Model-4 and Model-5, in Model-2, the rate of increase of displacement was higher than the increase of load rate. It was seen, finite element based ABAQUS program is inadequate in the modeling of the reinforced concrete specimens under shear force.

손상된 철근콘크리트보에 있어서 탄소섬유판의 보강 성능에 관한 연구 (A Study on the Reinforcement Performance of Carbon Fiber Plate(CFP) for Demaged Reinforced Concrete Beam)

  • 김철환;함영덕;김구진
    • 한국공간구조학회논문집
    • /
    • 제5권3호
    • /
    • pp.109-115
    • /
    • 2005
  • 본 논문에서는 강도를 향상시키기 위하여 탄소섬유쉬트를 압축하여 제작된 탄소섬유 판재을 이용하여 철근 콘크리트 보의 휨내력 향상과 이력거동에 미치는 영향을 규명하기 위하여 실험을 수행하였다. 실험의 주된 변수는 탄소섬유판재의 단면의 크기, 보강전에 철근콘크리트 보의 손상정도이다. 특히 보의 손상정도는 보가 과하중에 의해 손상을 받은 경우를 대상으로 하고 있으며 손상정도는 보의 최대 휨 내력의 30%, 60%, 100%로 하고 있으며 비교를 위하여 손상받지 않은 보도 실험하였다. 얻어진 결론은 탄소섬유판으로 보강한 경우는 보강하지 않은 보에 비해 강도는 상승하나 최대하중점에서의 변형은 감소하고 있으며, 연성에 있어서는 대등한 값을 나타내고 있다.

  • PDF

CFRP판으로 프리스트레싱 보강된 RC 보의 휨강도 해석 (Analysis of the Flexural Strength of Reinforced Concrete Beams Strengthened with Prestressed Carbon Fiber-Reinforced Polymer Plates)

  • 우상균;홍기남;한상훈;송영철
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제11권1호
    • /
    • pp.181-192
    • /
    • 2007
  • 본 연구의 목적은 CFRP판을 다양한 방법으로 보강한 RC보의 휨거동을 실험적으로 비교 분석하고, 프리스트레싱 보강공법의 실용화를 목적으로 프리스트레싱 보강 RC부재의 휨성능 평가식을 제안하는 것이다. 실험변수로는 CFRP판의 보강방법, 콘크리트 압축강도, 인장철근비 그리고 프리스트레싱 수준 등을 고려하였다. 실험결과 프리스트레싱이 도입되지 않은 실험체는 조기 부착파괴로 인해 탄소판이 콘크리트로부터 탈락하면서 파괴된 반면, 프리스트레싱을 가한 대부분의 실험체는 CFRP판의 파단으로 파괴되었다. 프리스트레싱 보강된 부재의 휨강도를 예측할 수 있는 식을 제안하였으며, 실험결과와의 비교를 통하여 제안식은 휨강도 예측에 있어 충분한 정확도를 확보하고 있음을 확인하였다.

Elastic analysis effect of adhesive layer characteristics in steel beam strengthened with a fiber-reinforced polymer plates

  • Daouadji, Tahar Hassaine;Hadji, Lazreg;Meziane, Mohamed Ait Amar;Bekki, Hadj
    • Structural Engineering and Mechanics
    • /
    • 제59권1호
    • /
    • pp.83-100
    • /
    • 2016
  • In this paper, the problem of interfacial stresses in steel beams strengthened with a fiber reinforced polymer plates is analyzed using linear elastic theory. The analysis is based on the deformation compatibility approach developed by Tounsi (2006) where both the shear and normal stresses are assumed to be invariant across the adhesive layer thickness. The analysis provides efficient calculations for both shear and normal interfacial stresses in steel beams strengthened with composite plates, and accounts for various effects of Poisson's ratio and Young's modulus of adhesive. Such interfacial stresses play a fundamental role in the mechanics of plated beams, because they can produce a sudden and premature failure. The analysis is based on equilibrium and deformations compatibility approach developed by Tounsi (2006). In the present theoretical analysis, the adherend shear deformations are taken into account by assuming a parabolic shear stress through the thickness of both the steel beam and bonded plate. The paper is concluded with a summary and recommendations for the design of the strengthened beam.