• Title/Summary/Keyword: beams(supports)

Search Result 111, Processing Time 0.026 seconds

Effect of utilizing pressurized ring beam system in modern rock TBM: I. Numerical study (현대식 Rock TBM에서 가압형 링빔의 효과 연구: I. 수치해석적 연구)

  • Kwak, Yun-Suk;Kang, Gi-Don;Kim, Do-Hoon;Lee, In-Mo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.14 no.1
    • /
    • pp.55-77
    • /
    • 2012
  • A Modern Rock TBM is a tunnel excavation method combining the conventional tunnelling method with the mechanized tunnelling method. It is a hybrid system that excavates a tunnel with TBM and supports the ground by ring beam, wire mesh, rock bolt, shotcrete, i.e., conventional tunnelling method. In the Modern Rock TBM, a ring beam is similar to a steel rib in NATM in the way that uses H-beam. But using a ring beam is more effective than a steel rib because it is installed in a closed-circle. Therefore, improving the performance of the ring beam is a key factor for achieving tunnel stability. In this respect, this study introduces a pressurized ring beam that might be functioning more effectively by confining convergence during tunnel excavation. In order to verify the effect of the pressurized ring beam, a three-dimensional numerical analysis was conducted. The numerical analysis confirms an increase in the minimum principal stress and reduction in the plastic strain that triggers excessive displacement. The analysis result also indicates a decrease in the relative displacement occurring after installing the ring beam, and expansion in spacing between the ring beams.

An Advanced Design Procedure for Dome and Ring Beam of Concrete Containment Structures (콘크리트 격납구조물 돔과 링빔의 개선된 설계기법)

  • Jeon, Se-Jin;Kim, Young-Jin
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.6
    • /
    • pp.817-824
    • /
    • 2010
  • The concrete containment structures have been widely used in nuclear power plants, LNG storage tanks, etc., due to their high safety and economic efficiency. The containment structure consists of a bottom slab, wall, ring beam and dome. The shape of the roof dome has a very significant effect on structural safety, the quantity of materials, and constructability; the thickness and curvature of the dome should therefore be determined to give the optimum design. The ring beam plays the role as supports for the dome, resulting in a minimized deformation of the wall. The main issues in designing the ring beam are the correct dimensions of the section and the prestress level. In this study, an efficient design procedure is proposed that can be used to determine an optimal shape and prestress level of the dome and ring beam. In the preliminary design stage of the procedure, the membrane theory of shells of revolution is adopted to determine several plausible alternatives which can be obtained even by hand calculation. Based on the proposed procedures, domes and ring beams of the existing domestic containment structures are analyzed and some improvements are discussed.

Experimental study of extracting artificial boundary condition frequencies for dynamic model updating

  • Hou, Chuanchuan;Mao, Lei;Lu, Yong
    • Smart Structures and Systems
    • /
    • v.20 no.2
    • /
    • pp.247-261
    • /
    • 2017
  • In the field of dynamic measurement and structural damage identification, it is generally known that modal frequencies may be measured with higher accuracy than mode shapes. However, the number of natural frequencies within a measurable range is limited. Accessing additional forms of modal frequencies is thus desirable. The present study is concerned about the extraction of artificial boundary condition (ABC) frequencies from modal testing. The ABC frequencies correspond to the natural frequencies of the structure with a perturbed boundary condition, but they can be extracted from processing the frequency response functions (FRF) measured in a specific configuration from the structure in its existing state without the need of actually altering the physical support condition. This paper presents a comprehensive experimental investigation into the measurability of the ABC frequencies from physical experiments. It covers the testing procedure through modal testing, the data processing and data analysis requirements, and the FRF matrix operations leading to the extraction of the ABC frequencies. Specific sources of measurement errors and their effects on the accuracy of the extracted ABC frequencies are scrutinised. The extracted ABC frequencies are subsequently applied in the damage identification in beams by means of finite element model updating. Results demonstrate that it is possible to extract the first few ABC frequencies from the modal testing for a variety of artificial boundary conditions incorporating one or two virtual pin supports, and the inclusion of ABC frequencies enables the identification of structural damages without the need to involve the mode shape information.

Structural Performance of Double Rip Decks Reinforced with Inverted Triangular Truss Girders (역삼각 트러스 거더로 보강된 더블 골 데크 성능 평가)

  • Son, Hong-Jun;Kim, Young-Ho;Chung, Kyung-Soo;Kim, Dae-Jin
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.30 no.6
    • /
    • pp.559-566
    • /
    • 2017
  • This paper proposes a new composite deckplate system reinforced with inverted triangular truss girders(called 'D Deck'), which does not require the use of temporary supports at construction stage. The proposed system retains increased stiffness and strength while keeping the absolute floor height change to a minimum level and can be utilized as floor systems of various types beam members such as the conventional wide-flange and U-shaped composite beams. In order to evaluate the performance of the proposed system, five specimens with a span of 5.5 m were fabricated and tested under field loading conditions consisting of several intermediate steps. The load-deflection curves of each specimen were plotted and compared with the nonlinear three-dimensional finite element analysis results. The comparison showed that the effective load sharing between the truss girders and floor deck occurs and the maximum deflection under construction stage loading is well below the limit estimated by the provisions in Korea Building Code.

Diaphragm Design Method of Steel Box Beam and Circular Column Connections (강재 원형기둥-상자형보 접합부의 다이아프램 설계법)

  • Kim, Young Pil;Hwang, Won Sup;Park, Moon Su
    • Journal of Korean Society of Steel Construction
    • /
    • v.18 no.2
    • /
    • pp.123-135
    • /
    • 2006
  • This paper investigates the design equations and the strength behavior of the diaphragm for steel box beams and circular-column connections. The strength of the connection is decided by the strength of the diaphragm and the strength of the beam and the column, because the connection diaphragm supports the concentration forces from the box beam's lower flange. In previous researches, however, the calculation procedure of the diaphragm stress from the indeterminate curved-beam model is to complicated to apply in process of the equation. Moreover, no reasonable design has yet ben made because the diaphragm's effect on the strength of the connection has not ben considered. Therefore, through nonlinear FEM analysis of the connection diaphragm, this study examines the strength behavior of a connection with diaphragm details. In addition, a great difference is confirmed between the theoretical and analytic behaviors. Fi naly, considering the strength of the connection and the rigidity capacity of the diaphragm, the diaphragm design method is proposed.

A Study on the Optimum Design of Three Span Continuous Preflex Composite Girder Bridge (3경간 연속 Preflex 합성형교의 최적설계에 관한 연구)

  • Koo, Min Se;Chang, Suong Su;Jeong, Jin Il
    • Journal of Korean Society of Steel Construction
    • /
    • v.10 no.1 s.34
    • /
    • pp.125-135
    • /
    • 1998
  • This study presents a design method for three-span continuous preflex composite girder bridges (3S-PCB) which imposes prestresses in the negative moment region by lifting or lowering interior supports and the design method is automated by a computer program which incorporates optimal design procedure. The objective function for the design of 3S-PCB minimizes the cost of construction materials and the constraint functions represent the limited dimensions of the design section and the allowable stress for each structural member as given in the specifications. Optimal design procedure used in this study is a modification of existing sequential unconstrained minimization technique (SUMT), a numerical analyses procedure for two-span continuous preflex composite bridges. The optimized design sections determined for each span length are compared with those of simple preflex composite beams (SPCB) and the optimal girder depth is determined by defining the relationship between girder depth and construction material costs.

  • PDF

Design and Analysis of Section-divided Circular Composite Wing Spar (단면분할 원통형 복합재료 날개 보 설계 및 해석)

  • Kim, Ki-Hoon;Koo, Kyo-Nam
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.10
    • /
    • pp.687-694
    • /
    • 2019
  • A circular composite spar in the wing of ultra-light aircraft is subjected to both bending moment and transverse shear loads. However, the beam being used in the aircraft may be inefficient because the design would not take into account the characteristics of the circular tube that supports the bending moment in top and bottom arc parts and the transverse load in left and right ones. Therefore, it is necessary to efficiently fabricate the circular tube beam by properly selecting the stacking sequences or the laminated composite structure. In order to increase both bending and transverse shear strengths of the beams, in this study, a cross-section of circular tube is divided into four arcs: top, bottom, left and right ones. The commercial program, MSC/NASTRAN is used to calculate vertical displacement and the normal and shear strains with variation of parameters such as division angle of arc and fiber orientation. Based on the results, the effective parameters for the new circular composite beam are presented to increase its bending and shear strengths.

A Study on the Behaviour Analysis and Construction Method of the Self-Supported Earth Retaining Wall (SSR) Using Landslide Stabilizing Piles (2열 H-파일을 이용한 자립식 흙막이 공법(SSR)의 거동분석 및 시공방법에 관한 연구)

  • Sim, Jae-Uk;Park, Keun-Bo;Son, Sung-Gon;Kim, Soo-Il
    • Journal of the Korean Geotechnical Society
    • /
    • v.25 no.1
    • /
    • pp.41-54
    • /
    • 2009
  • The purpose of this research is to introduce the new temporary earth retaining wall system using landslide stabilizing piles. This system is a self-supported retaining wall (SSR) without installing supports such as tiebacks, struts and rakers. The SSR is a kind of gravity structures consisting of twin parallel lines of piles driven below excavation level, tied together at head of soldier piles and landslide stabilizing piles by beams. In order to investigate applicability and safety of this system, a series of experimental model tests were carried out and the obtained results are presented and discussed. Furthermore, the measured data from seven different sites on which the SSR was used for excavation were collected and analyzed to investigate the characteristic behavior lateral wall movements associated with urban excavations in Korea. It is observed that lateral wall movements obtained from the experimental model is in good agreement with the general trend observed by in site measurements.

A numerical model for the long-term service analysis of steel-concrete composite beams regarding construction stages: Case study

  • Marcela P. Miranda;Jorge L. P. Tamayo;Inacio B. Morsch
    • Steel and Composite Structures
    • /
    • v.52 no.2
    • /
    • pp.199-215
    • /
    • 2024
  • The Caynarachi Bridge is a 130 m long posttensioned steel-concrete composite bridge built in Peru. The structural performance of this bridge under construction loads is reviewed in this paper using numerical simulation. Hence, a numerical model using shell finite elements to trace its deformational behavior at service conditions is proposed. The geometry and boundary conditions of the superstructure are updated according to the construction schedule. Firstly, the adequacy of the proposed model is validated with the field measurements obtained from the static truck load test. Secondly, the study of other scenarios less explored in research are performed to investigate the effect of some variables on bridge performance such as time effects, sequence of execution of concrete slabs and type of supports conditions at the abutments. The obtained results show that the original sequence of execution of the superstructure better behaves mechanically in relation to the other studied scenarios, yielding smaller stresses at critical cross sections with staging. It is also demonstrated that an improper slab staging may lead to more critical stresses at the studied cross sections and that casting the concrete slab at the negative moment regions first can lead to an optimal design. Also, the long-term displacements can be accurately predicted using an equivalent composite resistance cross section defined by a steel to concrete modulus ratio equal to three. This article gives some insights into the potential shortcomings or advantages of the original design through high-fidelity finite element simulations and reinforces the understating of posttensioned composite bridges with staging.

Influence of Column Base Rigidity on Behavior of Steel Buildings (강구조물 지지부의 강성도가 구조물 거동에 미치는 영향)

  • 권민호;박문호;장준호;박순응
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.15 no.1
    • /
    • pp.165-172
    • /
    • 2002
  • Generally, the steel rigid frame has been analyzed using finite element analysis tools. While many efforts have been poured into the understanding and accurate prediction for the nonlinear behavior of the columns and beam-columns connections, the base of the columns are modeled as simply hinged or fixed. However, the base of the steel columns practically is neither fixed not hinged. It behaves as semi-rigid. In this paper, the supports of the columns we modeled as semi-rigid and the importance of such approach in moment-resisting columns is evaluated. Two typical buildings designed by the US specification are modeled and analyzed by the finite element based on stiffness method and flexibility method. The column bases of three-story buildings are modeled as rotational springs with a varying degree of stiffness and strength that simulates the semi-rigidity of the base. Depending on the degree of stiffness and strength, the semi-rigidity varies from the hinged to the fixed. Buildings with semi-rigid column bases behaves similarly to the building with fixed bases. It has been numerically observed through the pushover and nonlinear time history analyses that the decrease of the stiffness of the column base induces the rotational demand on the int air beams. an increase of rotation demands on the first store connections and lead to a soft-story mechanists Due often to the construction and environmental effects, undesired reduction of column base stiffness may cause an increase of rotation demands on the first store connections and lead to a soft-story mechanism.