DOI QR코드

DOI QR Code

Design and Analysis of Section-divided Circular Composite Wing Spar

단면분할 원통형 복합재료 날개 보 설계 및 해석

  • Kim, Ki-Hoon (Department of Aerospace Engineering, University of Ulsan) ;
  • Koo, Kyo-Nam (Department of Aerospace Engineering, University of Ulsan)
  • Received : 2019.08.19
  • Accepted : 2019.09.21
  • Published : 2019.10.01

Abstract

A circular composite spar in the wing of ultra-light aircraft is subjected to both bending moment and transverse shear loads. However, the beam being used in the aircraft may be inefficient because the design would not take into account the characteristics of the circular tube that supports the bending moment in top and bottom arc parts and the transverse load in left and right ones. Therefore, it is necessary to efficiently fabricate the circular tube beam by properly selecting the stacking sequences or the laminated composite structure. In order to increase both bending and transverse shear strengths of the beams, in this study, a cross-section of circular tube is divided into four arcs: top, bottom, left and right ones. The commercial program, MSC/NASTRAN is used to calculate vertical displacement and the normal and shear strains with variation of parameters such as division angle of arc and fiber orientation. Based on the results, the effective parameters for the new circular composite beam are presented to increase its bending and shear strengths.

초경량 항공기 구조의 날개 보로 사용되는 원통형 복합재료 날개 보는 굽힘 모멘트와 전단하중을 동시에 받고 있는 구조물이다. 하지만 기존의 일반 원통형 보는 상하부의 굽힘 모멘트, 좌우부의 전단하중을 지지하는 구조적 특성을 고려하지 못하므로 비효율적일 수 있다. 따라서 섬유각 또는 복합재료를 적절히 배열하여 효율적으로 구조물을 만드는 것이 필요하다. 본 연구에서는 원통형 복합재료 보의 굽힘강도와 전단강도의 증가를 위해 보의 단면을 상하좌우로 분할하여 적층순서를 달리함으로써 효율적인 하중지지가 가능하게 하였다. 상용 프로그램 MSC/NASTRAN을 이용한 구조해석을 통해 원호 분할각과 섬유각에 따른 수직변위, 수직변형률, 전단변형률 계산하였다. 계산 결과에 따르면 새롭게 제안된 원통형 보의 분할각과 섬유 방향각을 선택하여 구조 강도를 증가시킬 수 있음을 제시하였다.

Keywords

References

  1. Hale, J., "Boeing 787 from the Ground Up," The Boeing Company Aero Quarterly, Issue 24, Quarter 04, 2006, pp. 17-23.
  2. Tomblin, J., "Overview of Composite Material Trends in Aviation Manufacturing," National Institute for Aviation Research, Wichita State University, 2006.
  3. Schoeberl, E., "From Sunrise to Solar-Impulse 34 Years of Solar Powered Flight," Technical Soaring, Vol. 32, No. 4, 2008, pp. 115-121.
  4. Shin, J. W., et al., "Structural Development for Human Powered Aircraft," Journal of the Korean Society for Aviation and Aeronautics, Vol. 21, No. 1, 2013, pp. 62-67. https://doi.org/10.12985/ksaa.2013.21.1.062
  5. Hwang, S. J., Kim, S. G., and Lee, Y. G., "Developing High Altitude Long Endurance Solarpowered Unmanned Aerial Vehicle," Journal of Aerospace System Engineering, Vol. 10, No. 1, 2016, pp. 59-65. https://doi.org/10.20910/JASE.2016.10.1.59
  6. Nam, H. W., et al., "Design and Manufacturing of Human Powered Aircraft," Capstone Project Report, University of Ulsan, 2013, pp. 5-7.
  7. Lee, C. R., et al., "HPA Structure Design and Power Measurement," Aerospace Engineering and Technology, Vol. 12, No. 2, 2013, pp. 209-220.
  8. Shin, J. W., Park, S. W., Lee, M. H., and Kim, T. U., "Light Wing Spar Design for High Altitude Long Endurance UAV," Journal of the Korean Society for Aviation and Aeronautics, Vol. 22, No. 2, 2014, pp. 27-33. https://doi.org/10.12985/ksaa.2014.22.2.027
  9. Daniel, I. M., and Ishai, O., Engineering Mechanics of Composite Materials, Oxford University Press, 1994, pp. 57-79.