• Title/Summary/Keyword: beam spot

Search Result 285, Processing Time 0.024 seconds

Spot-size converter design of an $1.3\mu{m}$ SSC-FP-LD for optical subscriber network (광가입자용 $1.3\mu{m}$ SSC-FP-LD의 모드변환기 구조 설계)

  • 심종인;진재현;어영선
    • Korean Journal of Optics and Photonics
    • /
    • v.11 no.6
    • /
    • pp.411-417
    • /
    • 2000
  • The waveguide structure effects of a spot-size converter (SSe) of a $1.3\mu{m}$ FP(Fabry-Perot)-LD(Laser Diode) were investigated. Its coupling efficiency and alignment tolerance with a single-mode fiber (SMF) were carefully examined by using a 3dimensional BPM (Beam Propagation Method). It was shown that the fOlmation of enough length of straightened waveguide around the end of the sse region can substantially improve the optical coupling efficiency for a vertically tapered sse. In contrast, a down-taper structure for a laterally tapered sse has superior characteristics to an up-tapered one. We suggested good sse structures which can provide a high coupling efficiency as well as a large alignment tolerance with an .SMF. .SMF.

  • PDF

Femtosecond Laser Ablation of Polymer Thin Films for Nanometer Precision Surface Patterning

  • Jun, Indong;Lee, Jee-Wook;Ok, Myoung-Ryul;Kim, Yu-Chan;Jeon, Hojeong
    • Journal of the Korean institute of surface engineering
    • /
    • v.49 no.1
    • /
    • pp.20-25
    • /
    • 2016
  • Femtosecond laser ablation of ultrathin polymer films on quartz glass using laser pulses of 100 fs and centered at ${\lambda}=400nm$ wavelength has been investigated for nanometer precision thin film patterning. Single-shot ablation craters on films of various thicknesses have been examined by atomic force microscopy, and beam spot diameters and ablation threshold fluences have been determined by square diameter-regression technique. The ablation thresholds of polymer film are about 1.5 times smaller than that of quartz substrate, which results in patterning crater arrays without damaging the substrate. In particular, at a $1/e^2$ laser spot diameter of $0.86{\mu}m$, the smallest craters of 150-nm diameter are fabricated on 15-nm thick film. The ablation thresholds are not influenced by the film thickness, but diameters of the ablated crater are bigger on thicker films than on thinner films. The ablation efficiency is also influenced by the laser beam spot size, following a $w_{0q}{^{-0.45}}$ dependence.

A Study of the Effects on the Structural Strength by Change of Spot Welding Pitch (점용접의 간격 변화에 의한 구조 강성 영향 평가 연구)

  • Hong, Min-Sung;Kim, Jong-Hyun
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.4
    • /
    • pp.511-520
    • /
    • 2010
  • In general, spot welding is used at no welding rod or flux for the process, low welding point temperature compared to arc welding, short heating time, less damage to the parent material, and low deformation and residual stress, relatively. Also, because of the pressurization effect, better mechanical qualities of the welding parts are obtained. Therefore, in various fields of industry its rapid operation speed can make mass production possible such as motor industry. In FEM analysis for the spot welding process, it is effective to use simple modeling rather than complicated one because of its numerous number of spots and reduction of analysis time. Therefore, this study provides with not only simplification of modeling analysis by using beam component composition of structure without re-compositing the spot welding point mesh but also modeling analysis of which property of fracture strength is reflected. In addition complete spot welding model is examined at rectangular post shape (hat shape) by impact test, compared the results, and verified its validity. As a result, it is possible to optimize the welding position and to recognize the strength of structure and the proposed equal distance model shows the effect of welding point reduction and improvement of stiffness.

Low-Frequency Vibration Analysis of a Center Pillar-to-Roof Rail Joint : Modelling Technique and Problems (센터 필라-루프 레일 조인트의 저진동 해석 : 모델링 기법과 문제점)

  • 김윤영;강정훈;송상헌
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.5 no.1
    • /
    • pp.59-68
    • /
    • 1997
  • The modelling techniques of a center pillar-to-roof rail joint for low frequency vibration analysis are examined and some fundamental problems are addressed. To develop a simplified beam-spring model of the joint, the present work is focused on 1) practical shell modelling techniques and 2) joint spring stiffness estimation methods a practical model-updating method to match the calculated natural frequencies to the experimentally determine ones is proposed, particularly focusing on spot welding modelling. In joint spring modelling, the results from the model with one joint spring are compared with those from the model with three coupled springs. Finally, some fundamental problems in beam-spring modelling are addressed.

  • PDF

Micro Machining of Aluminium using Pulsed Laser Beam (레이저빔을 이용한 알루미늄의 미세가공)

  • Shin, Hong Shik
    • Journal of Institute of Convergence Technology
    • /
    • v.4 no.2
    • /
    • pp.41-45
    • /
    • 2014
  • Micro fabrication technologies of aluminium have been required to satisfy many demands in technology fields. Pulsed laser beam machining can be an alternative method to accomplish the micro machining of aluminium. Pulsed laser beam can be applied to micro machining such as micro drilling and milling. Using pulsed laser beam, the machining characteristics of aluminium in micro drilling and milling were investigated according to average power, repetition rate, moving speed of spot. The laser beam machining with the optimal conditions can achieve precise micro figures. As a result, micro pattern, text and structures on aluminium surface was successfully fabricated by pulsed laser beam machining.

Study of LASER lamination with die (금형재의 레이저에 의한 규소 강판 적층 가공에 관한 연구)

  • 강형식
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.04a
    • /
    • pp.186-190
    • /
    • 1996
  • The technology of LASER lamination joining of sillicon steel sheets has been studied in this paper. Conventional sheets lamination process does not meet the requirments for the improvement electric parts performance. In response to this, a new LASER spot joining method has been developed. This study performs the SASER spot lamination joining while synchronizing the sillicon steel sheets in the dies with the press movement. Several conclusions have been drawn in this paper. Effects of beam focus, power, atmosphere gas and press oil etc.

  • PDF

A Study on the Electrom Beam Weldability of 9%Ni Steel (I) - Penetration and Electron Beam Characteristics - (9%Ni 강의 전자빔 용접성에 관한 연구 (I) - 전자빔 특성과 용입 -)

  • 김숙환;강정윤
    • Journal of Welding and Joining
    • /
    • v.15 no.3
    • /
    • pp.79-87
    • /
    • 1997
  • This study was performed to evaluate basic characteristics of electron beam welding process for a 9% Ni steel plate. The principal welding process parameters, such as working distance, accelerating voltage, beam current and welding speed were investigated. The AB (Arata Beam) test method was also applied to characterize beam size and energy density of the electron beam welding process. The electron beam size was found to decrease with the increase of accelerating voltage and the decrease of working distance. So, in case of high voltage (150kV), spot size and energy density of electron beam were revealed to be 0.9mm and $6.5\times10^5W/\textrm{cm}^2$ respectively. The accelerating voltage among the welding parameters was found to be the most important factor governing the penetration depth. When the accelerating voltage of electron beam was low ($\leq$90kV), beam current and welding speed did not affect on the penetration depth significantly. However, in case of high voltage ($\geq$120kV), the depth of penetration increased very sensitively with the increase of beam current and the decrease of welding speed.

  • PDF

The Study on Scattered Ray by C-arm in Operation Room (수술실 내 C-arm 장치의 산란선 분포에 대한 연구)

  • Park, Seung-Hyun;Park, Joo-Mi;Kim, Hyun-Soo
    • Korean Journal of Digital Imaging in Medicine
    • /
    • v.13 no.1
    • /
    • pp.21-26
    • /
    • 2011
  • A radiation imaging system used in a surgery room is mainly using C-arm which is purposed to fluoroscope. C-arm is often use to watch an operation's accuracy and progress, but not only being bombed to this first beam but also affected to this scattered beam, so now we are look for the way to reduce bombed amount of doctor, nurses and radiological technologists. We measured the exposure dose in $0^{\circ}$ spot according to the distance to find out frequency distribution of scattered ray in an operation room and found the spot which has the same exposure dose from $30^{\circ}$ distance of all directions and wrote isodose curve. We analyzed the data and found out the sudden reduction of scattered ray according to the long direction also found out that scattered ray was not related to the directions. Operators must recognize the reduction of exposure dose. Because reducing scattered ray from all directions in an operation room is really difficult. So every operators must use shelters to reduce the exposure dose and notice the safety.

  • PDF

Comparison of Theoretical model with Experiment in Bead Shape of Laser Welding (레이저 용접의 비드 형상에 대한 실험치와 이론 결과의 비교)

  • Kim, J.D.;Kim, J.D.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.11 no.1
    • /
    • pp.201-210
    • /
    • 1994
  • A theoretical heat-flow model incorporating with a constant moving CO$_{2}$ laser beam has been analyzed to predict depth and the shape of bead section during last beam welding. The laser beam is exponentially attenuated with an abosrption coefficient in the material. The solution can be expressed in terms of normalized variables. The experimental data were generated by usint CW 2 CO$_{2}$ laser with multi beam mode and CW 3 kW CO$_{2}$laser with Gaussian mode. The specimens were made as bead-on-plate welds for SM 10C, STS 304, STS 316, STS 420 and pure Nickel. The maximum possible penetration depth and the shape of beas section for given sources of laser power, travel speed and beam spot size can be prdicted with this model in a given material.

  • PDF