DOI QR코드

DOI QR Code

Femtosecond Laser Ablation of Polymer Thin Films for Nanometer Precision Surface Patterning

  • Jun, Indong (Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology) ;
  • Lee, Jee-Wook (School of Advanced Materials Engineering, Kookmin University) ;
  • Ok, Myoung-Ryul (Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology) ;
  • Kim, Yu-Chan (Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology) ;
  • Jeon, Hojeong (Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology)
  • Received : 2016.02.15
  • Accepted : 2016.02.25
  • Published : 2016.02.29

Abstract

Femtosecond laser ablation of ultrathin polymer films on quartz glass using laser pulses of 100 fs and centered at ${\lambda}=400nm$ wavelength has been investigated for nanometer precision thin film patterning. Single-shot ablation craters on films of various thicknesses have been examined by atomic force microscopy, and beam spot diameters and ablation threshold fluences have been determined by square diameter-regression technique. The ablation thresholds of polymer film are about 1.5 times smaller than that of quartz substrate, which results in patterning crater arrays without damaging the substrate. In particular, at a $1/e^2$ laser spot diameter of $0.86{\mu}m$, the smallest craters of 150-nm diameter are fabricated on 15-nm thick film. The ablation thresholds are not influenced by the film thickness, but diameters of the ablated crater are bigger on thicker films than on thinner films. The ablation efficiency is also influenced by the laser beam spot size, following a $w_{0q}{^{-0.45}}$ dependence.

Keywords

References

  1. D. A. Higgins, T. A. Everett, A. F. Xie, S. M. Forman, T. Ito, High-resolution direct-write multiphoton photolithography in poly (methylmethacrylate) films, Appl. Phys. Lett. 88 (2006) 184101. https://doi.org/10.1063/1.2200476
  2. S. Ibrahim, D. A. Higgins, T. Ito, Direct-write multiphoton photolithography: A systematic study of the etching Behaviors in various commercial polymers, Langmuir 23 (2007) 12406-12412. https://doi.org/10.1021/la7020066
  3. Costas. P. Grigoropoulos, Transport in Laser Microfabrication: Fundamentals and Applications, Cambridge University Press, NEW YORK (2009) 398.
  4. B. N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, A. Tunnermann, Femtosecond, picosecond and nanosecond laser ablation of solids, Appl. Phys. A 63 (1996) 109-115. https://doi.org/10.1007/BF01567637
  5. B. C. Stuart, M. D. Feit, A. M. Rubenchik, B. W. Shore, M. D. Perry, Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses, Phys. Rev. Lett. 74 (1995) 2248-2251. https://doi.org/10.1103/PhysRevLett.74.2248
  6. F. Korte, J. Serbin, J. Koch, A. Egbert, C. Fallnich, A. Ostendorf, B. N. Chichkov, Towards nanostructuring with femtosecond laser pulses, Appl. Phys. A 77 (2003) 229-235.
  7. D. J. Hwang, C. P. Grigoropoulos, T. Y. Choi, Efficiency of silicon micromachining by femtosecond laser pulses in ambient air, J. Appl. Phys. 99 (2006) 083101. https://doi.org/10.1063/1.2187196
  8. N. Hartmann, S. Franzka, J. Koch, A. Ostendorf, B. N. Chichkov, Subwavelength patterning of alkylsiloxane monolayers via nonlinear processing with single femtosecond laser pulses, Appl. Phys. Lett. 92 (2008) 223111. https://doi.org/10.1063/1.2939585
  9. H. Furutani, H. Fukumura, H. Masuhara, T. Lippert, A. Yabe, Laser-induced decomposition and ablation dynamics studied by nanosecond interferometry .1. A triazenopolymer film, J. of Phys. Chem. A 101 (1997) 5742-5747. https://doi.org/10.1021/jp971081x
  10. T. Lippert, Interaction of photons with polymers: From surface modification to ablation, Plasma Proc. Polym. 2 (2005) 525-546. https://doi.org/10.1002/ppap.200500036
  11. N. Arnold, N. Bityurin, D. Bauerle, Laser-induced thermal degradation and ablation of polymers: bulk model, Appl. Surf. Sci. 138 (1999) 212-217.
  12. R. Fardel, M. Nagel, T. Lippert, F. Nuesch, A. Wokaun, B. S. Luk'yanchuk, Influence of thermal diffusion on the laser ablation of thin polymer films, Appl. Phys. A 90 (2008) 661-667. https://doi.org/10.1007/s00339-007-4334-9
  13. B. Lukyanchuk, N. Bityurin, S. Anisimov, A. Malyshev, N. Arnold, D. Bauerle, Photophysical ablation of organic polymers: The influence of stresses, Appl. Surf. Sci. 106 (1996) 120-125. https://doi.org/10.1016/S0169-4332(96)00366-2
  14. A. Vogel, V. Venugopalan, Mechanisms of pulsed laser ablation of biological tissues, Chem. Rev. 103 (2003) 577-644. https://doi.org/10.1021/cr010379n
  15. J. Bonse, J. Solis, L. Urech, T. Lippert, A. Wokaun, Femtosecond and nanosecond laser damage thresholds of doped and undoped triazenepolymer thin films, Appl. Surf. Sci. 253 (2007) 7787-7791. https://doi.org/10.1016/j.apsusc.2007.02.128
  16. S. Baudach, J. Bonse, J. Kruger, W. Kautek, Ultrashort pulse laser ablation of polycarbonate and polymethylmethacrylate, Appl. Surf. Sci. 154 (2000) 555-560.
  17. H. Kumagai, K. Midorikawa, K. Toyoda, S. Nakamura, T. Okamoto, M. Obara, Ablation of Polymer-Films by a Femtosecond High-Peak-Power Ti Sapphire Laser at 798-Nm, Appl. Phys. Lett. 65 (1994) 1850-1852. https://doi.org/10.1063/1.112863
  18. H. Jeon, R. Schmidt, J. E. Barton, D. J. Hwang, L. J. Gamble, D. G. Castner, C. P. Grigoropoulos, K. E. Healy, Chemical Patterning of Ultrathin Polymer Films by Direct-Write Multiphoton Lithography, J. Am. Chem. Soc. 133 (2011) 6138-6141. https://doi.org/10.1021/ja200313q
  19. E. A. Cavalcanti-Adam, D. Aydin, V. C. Hirschfeld-Warneken, J. P. Spatz, Cell adhesion and response to synthetic nanopatterned environments by steering receptor clustering and spatial location, Hfsp Journal 2 (2008) 276-285. https://doi.org/10.2976/1.2976662
  20. J. Tang, R. Peng, J. D. Ding, The regulation of stem cell differentiation by cell-cell contact on micropatterned material surfaces, Biomaterials 31 (2010) 2470-2476. https://doi.org/10.1016/j.biomaterials.2009.12.006
  21. Q. Cheng, S. Li, K. Komvopoulos, Plasma-assisted surface chemical patterning for single-cell culture, Biomaterials 30 (2009) 4203-4210. https://doi.org/10.1016/j.biomaterials.2009.04.023
  22. H. W. Ma, D. J. Li, X. Sheng, B. Zhao, A. Chilkoti, Protein-resistant polymer coatings on silicon oxide by surface-initiated atom transfer radical polymerization, Langmuir 22 (2006) 3751-3756. https://doi.org/10.1021/la052796r
  23. A. Ben-Yakar, R. L. Byer, Femtosecond laser ablation properties of borosilicate glass, J. Appl. Phys. 96 (2004) 5316-5323. https://doi.org/10.1063/1.1787145
  24. N. Sanner, O. Uteza, B. Bussiere, G. Coustillier, A. Leray, T. Itina, M. Sentis, Measurement of femtosecond laser-induced damage and ablation thresholds in dielectrics, Appl. Phys. A. 94 (2009) 889-897. https://doi.org/10.1007/s00339-009-5077-6
  25. J. M. Liu, Simple technique for measurements of pulsed gaussian-beam spot sizes, Opt. Lett. 7 (1982) 196-198. https://doi.org/10.1364/OL.7.000196
  26. S. Hermann, N. P. Harder, R. Brendel, D. Herzog, H. Haferkamp, Picosecond laser ablation of SiO2 layers on silicon substrates, Appl. Phys. A. 99 (2010) 151-158. https://doi.org/10.1007/s00339-009-5464-z
  27. H. Masuhara, T. Asahi, Y. Hosokawa, Laser nanochemistry, Pure and Appl. Chem. 78 (2006) 2205-2226. https://doi.org/10.1351/pac200678122205
  28. Y. Hosokawa, M. Yashiro, T. Asahi, H. Masuhara, Photothermal conversion dynamics in femtosecond and picosecond discrete laser etching of Cuphthalocyanine amorphous film analysed by ultrafast UV-VIS absorption spectroscopy, J. of Photochem. and Photobio. A. 142 (2001) 197-207. https://doi.org/10.1016/S1010-6030(01)00514-7