• 제목/요약/키워드: beam position

검색결과 946건 처리시간 0.031초

Analysis of the root position of the maxillary incisors in the alveolar bone using cone-beam computed tomography

  • Jung, Yun-Hoa;Cho, Bong-Hae;Hwang, Jae Joon
    • Imaging Science in Dentistry
    • /
    • 제47권3호
    • /
    • pp.181-187
    • /
    • 2017
  • Purpose: The purpose of this study was to measure the buccal bone thickness and angulation of the maxillary incisors and to analyze the correlation between these parameters and the root position in the alveolar bone using cone-beam computed tomography (CBCT). Materials and Methods: CBCT images of 398 maxillary central and lateral incisors from 199 patients were retrospectively reviewed. The root position in the alveolar bone was classified as buccal, middle, or palatal, and the buccal type was further classified into subtypes I, II, and III. In addition, the buccolingual inclination of the tooth and buccal bone thickness were evaluated. Results: A majority of the maxillary incisors were positioned more buccally within the alveolar bone, and only 2 lateral incisors(0.5%) were positioned more palatally. The angulation of buccal subtype III was the greatest and that of the middle type was the lowest. Most of the maxillary incisors exhibited a thin facial bone wall, and the lateral incisors had a significantly thinner buccal bone than the central incisors. The buccal bone of buccal subtypes II and III was significantly thinner than that of buccal subtype I. Conclusion: A majority of the maxillary incisor roots were positioned close to the buccal cortical plate and had a thin buccal bone wall. Significant relationships were observed between the root position in the alveolar bone, the angulation of the tooth in the alveolar bone, and buccal bone thickness. CBCT analyses of the buccal bone and sagittal root position are recommended for the selection of the appropriate treatment approach.

Size-dependent mechanical behavior of functionally graded trigonometric shear deformable nanobeams including neutral surface position concept

  • Ahouel, Mama;Houari, Mohammed Sid Ahmed;Bedia, E.A. Adda;Tounsi, Abdelouahed
    • Steel and Composite Structures
    • /
    • 제20권5호
    • /
    • pp.963-981
    • /
    • 2016
  • A nonlocal trigonometric shear deformation beam theory based on neutral surface position is developed for bending, buckling, and vibration of functionally graded (FG) nanobeams using the nonlocal differential constitutive relations of Eringen. The present model is capable of capturing both small scale effect and transverse shear deformation effects of FG nanobeams, and does not require shear correction factors. The material properties of the FG nanobeam are assumed to vary in the thickness direction. The equations of motion are derived by employing Hamilton's principle, and the physical neutral surface concept. Analytical solutions are presented for a simply supported FG nanobeam, and the obtained results compare well with those predicted by the nonlocal Timoshenko beam theory.

광열변위법을 이용한 반무한 고체의 열확산계수 결정에 대한 이론적 연구 (A Theoretical Study for the Thermal Diffusivity Measurement of Semi-Infinite Solid Using Photothermal Displacement Method)

  • 전필수;이광재;유재석;박영무;이종화
    • 대한기계학회논문집B
    • /
    • 제26권12호
    • /
    • pp.1747-1755
    • /
    • 2002
  • A complete theoretical treatment of the photothermal displacement technique has been performed for thermal diffusivity measurement in semi-infinite solid materials. The influence of the parameters, such as radius and modulation frequency of the heating beam and the thermal diffusivity, was studied. Usually, thermal diffusivity was determined by the deformation angle and phase angle as the relative position between the heating and probe beams. In this study, we proposed the simple analysis method based on the real part of deformation gradient as the relative position between two beams. It is independent in the parameters such as power of heating beam, absorption coefficient, reflectivity, Poisson's ratio, and thermal expansion coefficient.

두 이동질량이 단순보의 동특성에 미치는 영향 (Influence of Two Moving Masses on Dynamic Behavior of a Simple Beam)

  • 윤한익;최창수;임순홍
    • 동력기계공학회지
    • /
    • 제4권4호
    • /
    • pp.70-77
    • /
    • 2000
  • On the dynamic behavior of a simple beam the influences of the velocities and distance of two moving masses have been studied by numerical method. The instant amplitude of a simple beam is calculated and analyzed for each position of the moving masses represented by the time functions. As increasing the velocties of two moving masses on the simple beam, the amplitude of the transverse vibration of the simple beam is decreased and the frequency of the transverse vibration of the simple beam is increased. As the distance between two moving masses increase, the transverse displacement of the simple beam is decrease. The simple beam is very stable in second mode at $\bar{a}=0.5$ and in third mode at $\bar{a}=0.3$.

  • PDF

한국인에서 상악 전치의 시상 치근 위치에 대한 연구 (A study on sagittal root position of maxillary anterior teeth in Korean)

  • 공현준
    • 구강회복응용과학지
    • /
    • 제36권2호
    • /
    • pp.88-94
    • /
    • 2020
  • 목적: 본 연구는 한국인에서 상악 전치의 치근 위치를 시상면에서 분석하고, 분류에 따른 빈도를 보고함으로써 즉시 식립 임플란트를 위한 방사선학적 자료를 수집하기 위함이다. 연구 재료 및 방법: 콘빔형 전산화단층영상(cone-beam CT)을 촬영한 환자 중 연구 기준에 적합한 120명(남성 60명, 여성 60명)을 대상으로 후향적 분석을 시행하였다. 축의 방향설정을 시행한 후에, 상악 전치부 치아와 치조골 사이의 관계에 대한 시상 치근 위치를 분석하였다. 치근이 치조골의 협측, 중앙, 구개측으로 위치한 경우 각각 Class I, II, III로 분류하였으며, 치근이 협측과 구개측 모두에서 피질골판에 2/3 이상 닿아있는 경우에는 Class IV로 하였다. 다음으로, 치아의 장축과 치조골의 장축 사이의 각도를 측정하였다. 기술적 분석 및 Kruskal-Wallis 분석을 시행하였으며, 치아의 위치 및 분류에 따른 시상각을 비교하였다. 결과: 상악 전치부의 시상 치근 위치에 대한 빈도분석 결과, Class I은 81.1%, Class II는 10.3%, Class III는 1.9%, 그리고 Class IV는 6.7%로 나타났다. 상악 전치부의 77.5%에서 시상각이 20도 이하로 나타났다. 그러나 견치의 경우, 42.7%에서 20도 이상의 시상각을 보였다. 분류에 따라서는 Class I (16.19)에서 Class II (8.72) 및 Class III (9.93)에 비해 통계학적으로 유의하게 높은 시상각을 보였으며, Class IV (3.79)에서 낮았다. 결론: 본 제한된 연구의 결과를 근거로, 상악 전치의 치근은 일반적으로 협측 치조골에 가깝게 위치하고 있으나, 일부 치아는 매우 얇은 치조골을 가지고 있으며, 30도 이상의 큰 시상각을 보였다. 따라서 적절한 치과 임플란트 치료 계획 수립을 위해 시상 치근 위치 및 시상각에 대한 cone-beam CT 분석이 필요할 것이다.

Influence of Moving Mass on Dynamic Behavior of Simply Supported Timoshenko Beam with Crack

  • Yoon Han-Ik;Choi Chang-Soo;Son In-Soo
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제7권1호
    • /
    • pp.24-29
    • /
    • 2006
  • In this paper, the effect of open crack on the dynamic behavior of simply supported Timoshenko beam with a moving mass was studied. The influences of the depth and the position of the crack on the beam were studied on the dynamic behavior of the simply supported beam system by numerical methods. The equation of motion is derived by using Lagrange's equation. The crack section is represented by a local flexibility matrix connecting two undamaged beam segments. The crack is modeled as a rotational spring. This flexibility matrix defines the relationship between the displacements and forces on the crack section and is derived by applying fundamental fracture mechanics theory. As the depth of the crack increases, the mid-span deflection of the Timoshenko beam with a moving mass is increased.

A Study on the Tip Position Control of Flexible Beam by Linear Matrix Inequality

  • Kim, Chang-Hwa;Chu, Man-Suk;Yang, Joo-Ho
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.121.2-121
    • /
    • 2001
  • Many of today´s robot are required to perform tasks which demand a high level of accuracy in end-effector positioning. Those rigid robots are very inefficient and slow because its have large and heavy links, In an attempt to solve these problems, a robots using flexible beam were created. But the single-link flexible beam is infinite-dimensional system. Many researchers have proposed controlling such a beam an approximated model consisting of a finite a number of models. In this paper, we start by deriving the analytic model for the dynamics of general single-link beam, and a controller is designed for flexible beam with integral type servo system bases of the linear matrix inequality (LM) technique. To the end, simulation results show that a designed controller guarantees affective vibration control the single-link flexible beam.

  • PDF

이동질량을 가진 단순지지 보의 동특성에 미치는 크랙의 영향 (Influence of Crack on Dynamic Behavior of Simply Supported Beam with Moving Mass)

  • 윤한익;이용운;손인수
    • 한국소음진동공학회논문집
    • /
    • 제13권9호
    • /
    • pp.720-729
    • /
    • 2003
  • An iterative modal analysis approach is developed to determine the effect of transverse open cracks on the dynamic behavior of simply supported Euler-Bernoulli beam with the moving mass. The influences of the depth and the position of the crack in the beam have been studied on the dynamic behavior of the simply supported beam system by numerical method. The crack section is represented by a local flexibility matrix connecting two undamaged beam segments i.e. the crack is modelled as a rotational spring. This flexibility matrix defines the relationship between the displacements and forces across the crack section and is derived by applying fundamental fracture mechanics theory. As the depth of the crack is increased the frequency of the simply supported beam with the moving mass is increased.

밸런스 빔 제어기를 이용한 자동부하 인식에 관한 연구 (A Study of Automatic Load Estimator for a Balance Beam Controller)

  • 이필주;사영호;이건영
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2002년도 하계학술대회 논문집 D
    • /
    • pp.2076-2078
    • /
    • 2002
  • This paper presents an Intelligent Balance Beam Controller(IBBC) which can estimate the inertia of load automatically. Balance Beam controller is a kind of construction tool which can control the attitude of the load hanging in the air such as a beam carried by crane. In our previous work, Balance Beam had been built to control the object in air using a mechanical gyro system having a position controllable gimbal structure. In field application the load inertia for operation is not easy to figure out because the weight and shape which determines the inertia, varies depending on the object to be carried. Therefore it is difficult for a worker to operate a Balance Beam and an accident could be caused occasionally. We designed an automatic load estimator to measure the inertia of arbitrary load by using an angular velocity sensor that is installed on the Balance Beam. Simulation results and current status for implementation are presented.

  • PDF

Modeling and fast output sampling feedback control of a smart Timoshenko cantilever beam

  • Manjunath, T. C.;Bandyopadhyay, B.
    • Smart Structures and Systems
    • /
    • 제1권3호
    • /
    • pp.283-308
    • /
    • 2005
  • This paper features about the modeling and design of a fast output sampling feedback controller for a smart Timoshenko beam system for a SISO case by considering the first 3 vibratory modes. The beam structure is modeled in state space form using FEM technique and the Timoshenko beam theory by dividing the beam into 4 finite elements and placing the piezoelectric sensor/actuator at one location as a collocated pair, i.e., as surface mounted sensor/actuator, say, at FE position 2. State space models are developed for various aspect ratios by considering the shear effects and the axial displacements. The effects of changing the aspect ratio on the master structure is observed and the performance of the designed FOS controller on the beam system is evaluated for vibration control.