• Title/Summary/Keyword: beach sand

Search Result 211, Processing Time 0.028 seconds

Spatial Characteristics of Vegetation Development and Groundwater Level in Sand Dunes on a Natural Beach (해안사구의 지하수위와 식생 발달의 공간적 특성 연구)

  • Park, JungHyun;Yoon, Han-sam;Jeon, Yong-Ho
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.19 no.3
    • /
    • pp.218-226
    • /
    • 2016
  • Field observations were used to study the characteristics and influence of groundwater level fluctuations on vegetation development on the natural beach of a sandy barrier island, in the Nakdong River estuary. The spatial/temporal fluctuations of the groundwater level and the interactions with the external forces (weather, ocean wave and tide) were analyzed. The results indicated that when it rains the groundwater level rises. During summer, when precipitation intensity is greater than 20 mm/hour, it rose rapidly over 20 cm. Subsequently, it fell gradually during periods of no precipitation. Seasonal characteristics indicated that the groundwater level was high during the summer rainy season and tended to fall in the winter dry season. The time-averaged groundwater level, observed from the four observations over 3 years (2012-2014), was about 1.47 m, higher than mean sea level (M.S.L.). It was shown that the average annual groundwater level rises toward the land rather than showing intertidal patterns observation. Differences in the presence or absence of a coastal sand dunes affected the progress of vegetation. In other words, in environments of saltwater intrusion where the groundwater level varies, dependent on the distance from the shoreline and bottom slope, sand dunes can be provided to affect soil conditions and groundwater, so that vegetation can be grown reliably.

Variations of Sediment Textural Parameters and Topography around Gangneung Harbor after the Completion of Harbor Construction (강릉항 완공 후 주변해역의 퇴적물 조직변수와 지형의 변화)

  • Oh, Jae-Kyung;Bang, Ki-Young
    • Journal of the Korean earth science society
    • /
    • v.34 no.2
    • /
    • pp.120-135
    • /
    • 2013
  • To investigate the changes in depositional environment around Gangneung Harbor, we analyzed the surface sediment textural parameters and topography data collected five times from February 2007 to February 2009. In the study area, sediments were mainly composed of sand and its sediment size became finer at offshore sites. During summer time, however, the sand grains became coarser than winter season near Namhangjin Beach, inside the harbor, and offshore areas. On the other hand, the grain size of Anmok Beach showed a gradual finer trend with time. Compared with the previous studies conducted before the completion of Gangneung Harbor construction, the mean grain size became finer on Anmok Beach, while it was coarser on Namhangjin Beach. The bathymetric changes observed over a 2-year period showed predominant erosion in the area of 5 to 10 m water depths and deposition in 2 to 5 m water depths. The shallower area less than 2 m water depths showed an alternating trend and yet slightly more dominant erosion process. The sediment textural parameters and the distribution of erosion and deposition have changed continuously. Results imply that such changes show long-term trends as well as seasonal variations in which the trend may have been formed after the completion of Gangneung Harbor construction.

Pore flow Characteristics in Seabed around Dike Due to Variation of Ground Water Level (지하수위 변화에 따른 호안 주변 지반내의 흐름특성)

  • Kim, Chang-Hoon;Kim, Do-Sam;Hur, Dong-Soo
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.19 no.5
    • /
    • pp.408-417
    • /
    • 2007
  • Recently, an artificial beach has been constructed compensating for loss of the natural one caused by the development of coastal area, as well as serving as a location for recreational activities such as sea bathing. It is well known that some structure should be constructed to protect an artificial beach from the outflow due to wave action of the reclaimed sand. In general, dike is utilized as the structure to protect an artificial beach. And, one of the factors which may need to be taken into consideration for stability of dike on seabed foundation is the ground water behavior behind dike. However, the interrelated phenomena of nonlinear wave and ground water response have relatively little attention although these interactions are important for stability of structure and sand suction to the artificial beach. In this paper, the numerical wave tank was developed to clarify nonlinear wave, dike and ground water dynamic interaction, which can simulate the difference of ground water and mean water level. Using the developed numerical wave tank, the present study investigates how variation of ground water level influences hydrodynamic characteristics in seabed around dike and numerically simulates the wave fields, pore flow patterns, pore water pressures and vorticities according to variation of ground water level. Numerical results explain well how hydrodynamic characteristics in seabed around dike is affected by the variation of ground water level.

Environmental Conditions as Accidental Nesting Place of Seaturtle Located in Jeju Island of Korea (우리나라 제주도에 위치한 바다거북 우연(偶然)산란장의 환경조건)

  • Jung, Min-Min;Moon, Dae-Yeon;Kim, Seong-Ho;Kim, Heung-Soo;Kim, Jae-Woo
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.24 no.4
    • /
    • pp.507-515
    • /
    • 2012
  • Jungmun beach was confirmed only one beach as a nesting place of seaturtles in Jeju of South Korea. We investigated the environment conditions for nesting of seaturtles (sites 1, 2) to target as the spawning grounds of accidental nesting place. Sand temperatures of beaches at 5 cm above and 10, 30 and 50 cm below the surface of beach were measured at intervals of approximately 10 days during June to December. These data indicated that the optimum (over $25^{\circ}C$) sand temperature for spawning and hatching of seaturtles in the sites 1 and 2 from June 23 to September 29, 2008 and from June 23 to October 17, 2008, respectively. Also, maintained the optimum coastal water temperature (above $20^{\circ}C$) for seaturtles maintained from June 23 to November 17, 2008. Therefore, Jungmun beach could be the possible spawning grounds of accidental nesting place, where the landed seaturtles and hatched young seaturtles could be survived successfully.

Beach Sediments of the Jeju Island, Korea (제주(濟州) 연안(沿岸)의 해빈퇴적물(海濱堆積物)에 관(關)한 연구(硏究))

  • Youn, Jeong-Su
    • Economic and Environmental Geology
    • /
    • v.18 no.1
    • /
    • pp.55-63
    • /
    • 1985
  • Studies based on field observation and laboratory analysis of the littoral sands of beaches in Jeju Island indicate that the shores exhibit a great variation in both the beach geometry and the composition in terms of geological agents. Most of the beaches around the Island are developed in relatively small patches and discontinuous, as the result of intervening sea cliffs and rocky headlands. The sand quality and the dimensions of the beaches in the Island are relatively poor; for example, these beaches are 220~2,780m in length, 41~313m in width, and $7^{\circ}$ steepness in average foreshore slope. According to the textural parameters analysis, the beach sediments in study portion shows medium grained ($average\;1.42{\phi}$), moderately well sorted ($average\;0.65{\phi}$) and negative skewed ($average\;0.34{\phi}$), which seems to reflecting a high energy marine depositional environment. The heavy and light minerals of te beach sediments are composed of quartz, volcanic fragments, Na-Ca feldspar, olivine, augite as major constituents, along with apatite, biotite and other minor components, which originates from the adjacent geology. The content of CaO-MgO in shell fragments of the littoral sands ranged from 4.69~51.96%, suggesting that the high CaO-MgO content in some of the Island's beaches is attributable to geologic environments conducive to the growth of shell organisms and sediments migration. The provenance of the sediments studied are derived predominantly from adjacent continental shelves and/or terrigenous older river portion, Which sediments were transported mostly by rolling or bottom suspension. The depositional environments of the Jeju beaches can be divided into two types: beaches distributed in the North and the Northeastern parts of the Island are dominated by marine enviroment, whereas beaches in the Southwestern portion are characterized by terrigenous agencies.

  • PDF

Wind Effect on Tidal Currents in the Neighborhood of Haeundae Beach (해운대 해수욕장 전면 해상의 조류에 미치는 바람효과)

  • Lee, Moon-Ock;Lee, Jong-Sup;Kim, Byeong-Kuk;Kim, Jong-Kyu
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.22 no.1
    • /
    • pp.34-46
    • /
    • 2010
  • We observed tidal currents throughout all four seasons in 2007 at a single station, located 1.6km off Haeundae Beach and compared these current data with wind data. The direction of seasonal wind represented a similarity between the winds at sea and on land but the speed of wind at sea was almost three times stronger than the wind on land. In addition, the wind at sea turned out to considerably affect on tidal currents, particularly from late summer to autumn. On the other hand, the thickness of Ekman Layer, indicating a limitation of wind influence, was estimated to be 31.8 m on average, suggesting that the entire water column is under the influence of wind. Therefore, we are required to consider the wind stress into the analysis of tidal currents for the prevention of the loss of sand from Haeundae Beach.

A Comparison of the Effects of Barefoot Walking and Sneakers Walking on a Sandy Beach on Pain, Disability, Motor Function, Sleep Satisfaction, and Quality of Life in the Elderly with Low Back Pain (모래사장 위 맨발걷기와 운동화걷기가 허리통증이 있는 노인의 통증, 장애, 운동기능, 수면만족도, 삶의 질에 미치는 효과 비교)

  • Lee, Gain;Jeon, Jaejung;Hahm, Sukchan
    • Journal of The Korean Society of Integrative Medicine
    • /
    • v.8 no.4
    • /
    • pp.29-38
    • /
    • 2020
  • Purpose : The purpose of this research was to investigate the effects of barefoot walking on the sandy beach on pain intensity, disability, motor function, sleep satisfaction, and quality of life in the elderly with low back pain (LBP). Methods : A single-blinded randomized controlled trial was conducted involving 32 elderly with LBP who underwent sand walking barefoot (intervention, n=16) or with sneakers (control, n = 16). Both walking methods were carried out for 30 minutes per day, three times a week for four weeks. Pain intensity and disability were assessed using the visual analog scale and Oswestry disability index, respectively. Balance and gait were evaluated using the Berg balance scale and timed up and go test, respectively. Sleep satisfaction was quantified with the Verran and Snyder-Halpern sleep scale. Finally, quality of life was assessed through the WHO quality of life scale's abbreviated Korean version. Results : Compared with the control group, the intervention group showed significant differences in pain intensity (p=.005), disability due to LBP (p=.002), static balance ability (p=.003), dynamic balance ability (p=.002), and sleep satisfaction (p=.017). There was no significant difference in the quality of life between the two groups. Conclusion : Barefoot walking on a sandy beach is significantly effective in improving pain, disability due to LBP, balance ability, and sleep satisfaction in the elderly with LBP. Further studies with larger sample sizes and longer intervention periods must to be conducted to generalize using barefoot walking in LBP management.

Shoreline Change Analysis of Haeundae Beach Using Airborne LiDAR Survey (항공 LiDAR 측량을 이용한 해운대 해안의 해안선 변화 분석)

  • Lee, Jae One;Kim, Yong Suk;We, Gwang Jae
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.4D
    • /
    • pp.561-567
    • /
    • 2008
  • In this study, shoreline change was analyzed by RTK-GPS and advanced airborne LiDAR survey. For extraction of coastline, first of all, tide correction was conducted at all RTK-GPS points through the comparing with the corresponding tidal height, and cross section providing coastline was produced using Autocad Civil3D program. Comparing with two results of RTK-GPS (first, 29 Aug 2007; second, 6 Oct 2007) surveys, coastline of the first result had been decreased about 21m compare with that of the second. And it was also demonstrated that the length of coastline by the first RTK-GPS was 15m shorter than that by the airborne LiDAR survey (Dec. 2006). In addition, we recoquized that the erosion appeared in the top right-hand (dock area); the sediment in the bottom left-hand (Chosun beach area) of the Haeundae beach. As a result, therefore, it was learned that artificial sand filling for beach open and natural effects such as a typhoon, current drift, wind direction gave cause for area changes and coastline.

An Experimental Study of Sediment Transport Patterns behind Offshore Structure (외해 구조물 배후의 표사이동에 관한 실험적 연구)

  • Shin Seung-Ho;Hong Keyyong
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.7 no.4
    • /
    • pp.207-215
    • /
    • 2004
  • Recently, securing a vast land in the land region becomes more difficult and efforts to seek its alternation in the sea area have been increased. As a consequence, the coastal region has been faced to extensive beach erosion problems. In planning offshore structures such as artificial islands, it is necessary to forecast the influence of the structure construction exerting on the beach erosion of the adjacent coast. In the present study, the sediment movement pattern behind offshore structure was examined through a series of three dimensional movable bed experiments, so as to develop the numerical model which forecasts morphological change including beach erosions. The experimental results reveal that the sediment movement patterns of the beach line side and the depth region are separated at a certain boundary line. In details, at the beach side including swash zone the sediment movement becomes dominant, which is governed by a relation between depth contours and incident wave directions, while at the depth region the bed load and suspended load due to the orbit motion of waves are carried by nearshore currents, and both movements are clearly separated at a specified boundary that is related to partial standing wave from the beach. It is expected that these results can be effectively used for verification of a numerical model on morphological change of the coast.

  • PDF

Impacts of wave and tidal forcing on 3D nearshore processes on natural beaches. Part II: Sediment transport

  • Bakhtyar, R.;Dastgheib, A.;Roelvink, D.;Barry, D.A.
    • Ocean Systems Engineering
    • /
    • v.6 no.1
    • /
    • pp.61-97
    • /
    • 2016
  • This is the second of two papers on the 3D numerical modeling of nearshore hydro- and morphodynamics. In Part I, the focus was on surf and swash zone hydrodynamics in the cross-shore and longshore directions. Here, we consider nearshore processes with an emphasis on the effects of oceanic forcing and beach characteristics on sediment transport in the cross- and longshore directions, as well as on foreshore bathymetry changes. The Delft3D and XBeach models were used with four turbulence closures (viz., ${\kappa}-{\varepsilon}$, ${\kappa}-L$, ATM and H-LES) to solve the 3D Navier-Stokes equations for incompressible flow as well as the beach morphology. The sediment transport module simulates both bed load and suspended load transport of non-cohesive sediments. Twenty sets of numerical experiments combining nine control parameters under a range of bed characteristics and incident wave and tidal conditions were simulated. For each case, the general morphological response in shore-normal and shore-parallel directions was presented. Numerical results showed that the ${\kappa}-{\varepsilon}$ and H-LES closure models yield similar results that are in better agreement with existing morphodynamic observations than the results of the other turbulence models. The simulations showed that wave forcing drives a sediment circulation pattern that results in bar and berm formation. However, together with wave forcing, tides modulate the predicted nearshore sediment dynamics. The combination of tides and wave action has a notable effect on longshore suspended sediment transport fluxes, relative to wave action alone. The model's ability to predict sediment transport under propagation of obliquely incident wave conditions underscores its potential for understanding the evolution of beach morphology at field scale. For example, the results of the model confirmed that the wave characteristics have a considerable effect on the cumulative erosion/deposition, cross-shore distribution of longshore sediment transport and transport rate across and along the beach face. In addition, for the same type of oceanic forcing, the beach morphology exhibits different erosive characteristics depending on grain size (e.g., foreshore profile evolution is erosive or accretive on fine or coarse sand beaches, respectively). Decreasing wave height increases the proportion of onshore to offshore fluxes, almost reaching a neutral net balance. The sediment movement increases with wave height, which is the dominant factor controlling the beach face shape.