• Title/Summary/Keyword: bayesian reliability

Search Result 241, Processing Time 0.022 seconds

Bayesian Algorithms for Evaluation and Prediction of Software Reliability (소프트웨어 신뢰도의 평가와 예측을 위한 베이지안 알고리즘)

  • Park, Man-Gon;Ray
    • The Transactions of the Korea Information Processing Society
    • /
    • v.1 no.1
    • /
    • pp.14-22
    • /
    • 1994
  • This paper proposes two Bayes estimators and their evaluation algorithms of the software reliability at the end testing stage in the Smith's Bayesian software reliability growth model under the data prior distribution BE(a, b), which is more general than uniform distribution, as a class of prior information. We consider both a squared-error loss function and the Harris loss function in the Bayesian estimation procedures. We also compare the MSE performances of the Bayes estimators and their algorithms of software reliability using computer simulations. And we conclude that the Bayes estimator of software reliability under the Harris loss function is more efficient than other estimators in terms of the MSE performances as a is larger and b is smaller, and that the Bayes estimators using the beta prior distribution as a conjugate prior is better than the Bayes estimators under the uniform prior distribution as a noninformative prior when a>b.

  • PDF

Bayesian Estimation for the Reliability of a Multicomponent Stress-Strength System Using Noninformative Priors (비정보 사전분포를 이용한 다중 부품 부하-강도체계의 신뢰도에 대한 베이지안 추정)

  • 김병휘;장인홍
    • Proceedings of the Korean Reliability Society Conference
    • /
    • 2000.11a
    • /
    • pp.411-411
    • /
    • 2000
  • Consider the problem of estimating the reliability of a multicomponent stress-strength system which functions if at least r of the k identical components simultaneously function. All stresses and strengths are assumed to be independent random variables with two parameter Weibull distributions. First, we derive reference priors and probability matching priors which are noninformative priors. We next investigate sufficient conditions for propriety of posteriors under reference priors and probability matching priors. Finally, we provide, using these priors, some numerical results for Bayes estimates of the reliability by applying Gibbs sampling technique.

  • PDF

A Development on Reliability Data Integration Program (신뢰도 데이터 합성 program의 개발)

  • Rhie, Kwang-Won;Park, Moon-Hi;Oh, Shin-Kyu;Han, Jeong-Min
    • Journal of the Korean Society of Safety
    • /
    • v.18 no.4
    • /
    • pp.164-168
    • /
    • 2003
  • Bayes theorem, suggested by the British Mathematician Bayes (18th century), enables the prior estimate of the probability of an event under the condition given by a specific This theorem has been frequently used to revise the failure probability of a component or system. 2-Stage Bayesian procedure was firstly published by Shultis et al. (1981) and Kaplan (1983), and was further developed based on the studies of Hora & Iman (1990) Papazpgolou et al., Porn(1993). For a small observed failure number (below 12), the estimated reliability of a system or component is not reliable. In the case in which the reliability data of the corresponding system or component can be found in a generic reliability reference book, however, a reliable estimation of the failure probability can be realized by using Bayes theorem, which jointly makes use of the observed data (specific data) and the data found in reference book (generic data).

Hazard Rate Estimation from Bayesian Approach (베이지안 확률 모형을 이용한 위험률 함수의 추론)

  • Kim, Hyun-Mook;Ahn, Seon-Eung
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.28 no.3
    • /
    • pp.26-35
    • /
    • 2005
  • This paper is intended to compare the hazard rate estimations from Bayesian approach and maximum likelihood estimate(MLE) method. Hazard rate frequently involves unknown parameters and it is common that those parameters are estimated from observed data by using MLE method. Such estimated parameters are appropriate as long as there are sufficient data. Due to various reasons, however, we frequently cannot obtain sufficient data so that the result of MLE method may be unreliable. In order to resolve such a problem we need to rely on the judgement about the unknown parameters. We do this by adopting the Bayesian approach. The first one is to use a predictive distribution and the second one is a method called Bayesian estimate. In addition, in the Bayesian approach, the prior distribution has a critical effect on the result of analysis, so we introduce the method using computerized-simulation to elicit an effective prior distribution. For the simplicity, we use exponential and gamma distributions as a likelihood distribution and its natural conjugate prior distribution, respectively. Finally, numerical examples are given to illustrate the potential benefits of the Bayesian approach.

The Bivariate Kumaraswamy Weibull regression model: a complete classical and Bayesian analysis

  • Fachini-Gomes, Juliana B.;Ortega, Edwin M.M.;Cordeiro, Gauss M.;Suzuki, Adriano K.
    • Communications for Statistical Applications and Methods
    • /
    • v.25 no.5
    • /
    • pp.523-544
    • /
    • 2018
  • Bivariate distributions play a fundamental role in survival and reliability studies. We consider a regression model for bivariate survival times under right-censored based on the bivariate Kumaraswamy Weibull (Cordeiro et al., Journal of the Franklin Institute, 347, 1399-1429, 2010) distribution to model the dependence of bivariate survival data. We describe some structural properties of the marginal distributions. The method of maximum likelihood and a Bayesian procedure are adopted to estimate the model parameters. We use diagnostic measures based on the local influence and Bayesian case influence diagnostics to detect influential observations in the new model. We also show that the estimates in the bivariate Kumaraswamy Weibull regression model are robust to deal with the presence of outliers in the data. In addition, we use some measures of goodness-of-fit to evaluate the bivariate Kumaraswamy Weibull regression model. The methodology is illustrated by means of a real lifetime data set for kidney patients.

한정고장집단의 출하품질 보증을 위한 샘플링검사방식 설계

  • 권영일
    • Proceedings of the Korean Reliability Society Conference
    • /
    • 2002.06a
    • /
    • pp.275-279
    • /
    • 2002
  • A Bayesian acceptance sampling plan for limited failure populations are developed. We consider a situation where defective products have short lifetimes and non-defective ones never fail during the technological life of the products. An acceptance criterion which guarantees the out going quality of accepted products is derived using the prior information on the quality of lots submitted for inspection. Numerical examples are provided.

  • PDF

Identification of Uncertainty on the Reduction of Dead Storage in Soyang Dam Using Bayesian Stochastic Reliability Analysis (Bayesian 추계학적 신뢰도 기법을 이용한 소양강댐 퇴사용량 감소의 불확실성 분석)

  • Lee, Cheol-Eung;Kim, Sang Ug
    • Journal of Korea Water Resources Association
    • /
    • v.46 no.3
    • /
    • pp.315-326
    • /
    • 2013
  • Despite of the importance on the maintenance of a reservoir storage, relatively few studies have addressed the stochastic reliability analysis including uncertainty on the decrease of the reservoir storage by the sedimentation. Therefore, the stochastic gamma process under the reliability framework is developed and applied to estimate the reduction of the Soyang Dam reservoir storage in this paper. Especially, in the estimation of parameters of the stochastic gamma process, the Bayesian MCMC scheme using informative prior distribution is used to incorporate a wide variety of information related with the sedimentation. The results show that the selected informative prior distribution is reasonable because the uncertainty of the posterior distribution is reduced considerably compared to that of the prior distribution. Also, the range of the expected life time of the dead storage in Soyang Dam reservoir including uncertainty is estimated from 119.3 years to 183.5 years at 5% significance level. Finally, it is suggested that the improvement of the assessment strategy in this study can provide the valuable information to the decision makers who are in charge of the maintenance of a reservoir.

Probabilistic-based assessment of composite steel-concrete structures through an innovative framework

  • Matos, Jose C.;Valente, Isabel B.;Cruz, Paulo J.S.;Moreira, Vicente N.
    • Steel and Composite Structures
    • /
    • v.20 no.6
    • /
    • pp.1345-1368
    • /
    • 2016
  • This paper presents the probabilistic-based assessment of composite steel-concrete structures through an innovative framework. This framework combines model identification and reliability assessment procedures. The paper starts by describing current structural assessment algorithms and the most relevant uncertainty sources. The developed model identification algorithm is then presented. During this procedure, the model parameters are automatically adjusted, so that the numerical results best fit the experimental data. Modelling and measurement errors are respectively incorporated in this algorithm. The reliability assessment procedure aims to assess the structure performance, considering randomness in model parameters. Since monitoring and characterization tests are common measures to control and acquire information about those parameters, a Bayesian inference procedure is incorporated to update the reliability assessment. The framework is then tested with a set of composite steel-concrete beams, which behavior is complex. The experimental tests, as well as the developed numerical model and the obtained results from the proposed framework, are respectively present.