• 제목/요약/키워드: bayesian classifier

검색결과 149건 처리시간 0.022초

선택적 자질 차원 축소를 이용한 최적의 지도적 LSA 방법 (Optimal supervised LSA method using selective feature dimension reduction)

  • 김정호;김명규;차명훈;인주호;채수환
    • 감성과학
    • /
    • 제13권1호
    • /
    • pp.47-60
    • /
    • 2010
  • 기존 웹 페이지 자동분류 연구는 일반적으로 학습 기반인 kNN(k-Nearest Neighbor), SVM(Support Vector Machine)과 통계 기반인 Bayesian classifier, NNA(Neural Network Algorithm)등 여러 종류의 분류작업에서 입증된 분류 기법을 사용하여 웹 페이지를 분류하였다. 하지만 인터넷 상의 방대한 양의 웹 페이지와 각 페이지로부터 나오는 많은 양의 자질들을 처리하기에는 공간적, 시간적 문제에 직면하게 된다. 그리고 분류 대상을 표현하기 위해 흔히 사용하는 단일(uni-gram) 자질 기반에서는 자질들 간의 관계 분석을 통해 자질에 정확한 의미를 부여하기 힘들다. 특히 본 논문의 분류 대상인 한글 웹 페이지의 자질인 한글 단어는 중의적인 의미를 가지는 경우가 많기 때문에 이러한 중의성이 분류 작업에 많은 영향을 미칠 수 있다. 잠재적 의미 분석 LSA(Latent Semantic Analysis) 분류기법은 선형 기법인 특이치 분해 SVD(Singular Value Decomposition)을 통해 행렬의 분해 및 차원 축소(dimension reduction)를 수행하여 대용량 데이터 집합의 분류를 효율적으로 수행하고, 또한 차원 축소를 통해 새로운 의미공간을 생성하여 자질들의 중의적 의미를 분석할 수 있으며 이 새로운 의미공간상에 분류 대상을 표현함으로써 분류 대상의 잠재적 의미를 분석할 수 있다. 하지만 LSA의 차원 축소는 전체 데이터의 표현 정도만을 고려할 뿐 분류하고자 하는 범주를 고려하지 않으며 또한 서로 다른 범주 간의 차별성을 고려하지 않기 때문에 축소된 차원 상에서 분류 시 서로 다른 범주 데이터간의 모호한 경계로 인해 안정된 분류 성능을 나타내지 못한다. 이에 본 논문은 새로운 의미공간(semantic space) 상에서 서로 다른 범주사이의 명확한 구분을 위한 특별한 차원 선택을 수행하여 최적의 차원 선택과 안정된 분류성능을 보이는 최적의 지도적 LSA을 소개한다. 제안한 지도적 LSA 방법은 기본 LSA 및 다른 지도적 LSA 방법들에 비해 저 차원 상에서 안정되고 더 높은 성능을 보였다. 또한 추가로 자질 생성 및 선택 시 불용어의 제거와 자질에 대한 가중치를 통계적인 학습을 통해 얻음으로써 더 높은 학습효과를 유도하였다.

  • PDF

베이지언 문서분류시스템을 위한 능동적 학습 기반의 학습문서집합 구성방법 (An Active Learning-based Method for Composing Training Document Set in Bayesian Text Classification Systems)

  • 김제욱;김한준;이상구
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제29권12호
    • /
    • pp.966-978
    • /
    • 2002
  • 기계학습 기법을 이용한 문서분류시스템의 정확도를 결정하는 요인 중 가장 중요한 것은 학습문서 집합의 선택과 그것의 구성방법이다. 학습문서집합 선택의 문제란 임의의 문서공간에서 보다 정보량이 큰 적은 양의 문서집합을 골라서 학습문서로 채택하는 것을 말한다. 이렇게 선택한 학습문서집합을 재구성하여 보다 정확도가 높은 문서분류함수를 만드는 것이 학습문서집합 구성방법의 문제이다. 전자의 문제를 해결하는 대표적인 알고리즘이 능동적 학습(active learning) 알고리즘이고, 후자의 경우는 부스팅(boosting) 알고리즘이다. 본 논문에서는 이 두 알고리즘을 Naive Bayes 문서분류 알고리즘에 적응해보고, 이때 생기는 여러 가지 특징들을 분석하여 새로운 학습문서집합 구성방법인 AdaBUS 알고리즘을 제안한다. 이 알고리즘은 능동적 학습 알고리즘의 아이디어를 이용하여 최종 문서분류함수룰 만들기 위해 임시로 만든 여러 임시 문서분류함수(weak hypothesis)들 간의 변이(variance)를 높였다. 이를 통해 부스팅 알고리즘이 효과적으로 구동되기 위해 필요한 핵심 개념인 교란(perturbation)의 효과를 실현하여 문서분류의 정확도를 높일 수 있었다. Router-21578 문서집합을 이용한 경험적 실험을 통해, AdaBUS 알고리즘이 기존의 알고리즘에 비해 Naive Bayes 알고리즘에 기반한 문서분류시스템의 정확도를 보다 크게 향상시킨다는 사실을 입증한다.

Refinement of damage identification capability of neural network techniques in application to a suspension bridge

  • Wang, J.Y.;Ni, Y.Q.
    • Structural Monitoring and Maintenance
    • /
    • 제2권1호
    • /
    • pp.77-93
    • /
    • 2015
  • The idea of using measured dynamic characteristics for damage detection is attractive because it allows for a global evaluation of the structural health and condition. However, vibration-based damage detection for complex structures such as long-span cable-supported bridges still remains a challenge. As a suspension or cable-stayed bridge involves in general thousands of structural components, the conventional damage detection methods based on model updating and/or parameter identification might result in ill-conditioning and non-uniqueness in the solution of inverse problems. Alternatively, methods that utilize, to the utmost extent, information from forward problems and avoid direct solution to inverse problems would be more suitable for vibration-based damage detection of long-span cable-supported bridges. The auto-associative neural network (ANN) technique and the probabilistic neural network (PNN) technique, that both eschew inverse problems, have been proposed for identifying and locating damage in suspension and cable-stayed bridges. Without the help of a structural model, ANNs with appropriate configuration can be trained using only the measured modal frequencies from healthy structure under varying environmental conditions, and a new set of modal frequency data acquired from an unknown state of the structure is then fed into the trained ANNs for damage presence identification. With the help of a structural model, PNNs can be configured using the relative changes of modal frequencies before and after damage by assuming damage at different locations, and then the measured modal frequencies from the structure can be presented to locate the damage. However, such formulated ANNs and PNNs may still be incompetent to identify damage occurring at the deck members of a cable-supported bridge because of very low modal sensitivity to the damage. The present study endeavors to enhance the damage identification capability of ANNs and PNNs when being applied for identification of damage incurred at deck members. Effort is first made to construct combined modal parameters which are synthesized from measured modal frequencies and modal shape components to train ANNs for damage alarming. With the purpose of improving identification accuracy, effort is then made to configure PNNs for damage localization by adapting the smoothing parameter in the Bayesian classifier to different values for different pattern classes. The performance of the ANNs with their input being modal frequencies and the combined modal parameters respectively and the PNNs with constant and adaptive smoothing parameters respectively is evaluated through simulation studies of identifying damage inflicted on different deck members of the double-deck suspension Tsing Ma Bridge.

하지근력증강로봇 제어를 위한 착용자의 보행단계구분 (Human Gait-Phase Classification to Control a Lower Extremity Exoskeleton Robot)

  • 김희영
    • 한국통신학회논문지
    • /
    • 제39B권7호
    • /
    • pp.479-490
    • /
    • 2014
  • 하지근력증강로봇은 인간의 하체에 착용하여 보행능력을 강화하거나 보조하기 위한 장비다. 보행능력을 향상하기 위해 로봇은 착용자의 걷는 움직임을 감지하고 이에 적합한 로봇의 동작을 구동한다. 본 논문에서는 로봇이 착용자의 움직임을 감지하는 방법을 소개하고, 감지된 데이터를 착용자의 현재 보행단계를 의미하는 보행단계상태 정보로 변환하는 보행단계구분 알고리즘을 제시한다. 로봇은 보행단계상태 정보에 따라 현재 필요한 제어모드를 결정하고 로봇구동기를 작동하기 때문에 잘못된 정보가 전달된다면 로봇은 착용자의 보행능력을 향상할 수 없거나 착용자에게 오히려 불편을 줄 수 있다. 따라서 보행단계구분 알고리즘은 항상 정확한 정보를 제공할 수 있어야 한다. 하지만 본 연구에서 사용하는 센서장치의 경우 작은 움직임에도 민감하게 반응하는 특성이 있어 센서데이터를 임계기준으로 구분하는 방법으로는 항상 정확한 보행단계상태 정보를 구할 수 없다. 이러한 특성을 극복하면서 정확한 정보를 제공하기 위해 확률적 구분 방법을 응용한 나이브-플렉시블 베이지안 보행단계구분 알고리즘을 제안하였고, 실험을 통해 제안 방법의 정확성을 비교 분석하였다.

선호도 재계산을 위한 연관 사용자 군집 분석과 Representative Attribute -Neighborhood를 이용한 협력적 필터링 시스템의 성능향상 (Performance Improvement of Collaborative Filtering System Using Associative User′s Clustering Analysis for the Recalculation of Preference and Representative Attribute-Neighborhood)

  • 정경용;김진수;김태용;이정현
    • 정보처리학회논문지B
    • /
    • 제10B권3호
    • /
    • pp.287-296
    • /
    • 2003
  • 추천 시스템에 있어서 협력적 필터링 기술은 많은 연구가 되고 있다. 그러나 협력적 필터링 기술을 이용한 추천 시스템은 초기 평가 문제와 희박성 문제가 발생한다. 이를 해결하기 위해서 본 논문에서는 선호도 재 계산을 위한 연관 사용자 군집과 베이지안 추정치를 이용한 사용자 선호도 예측 방법을 제안한다. 제안한 방법에서는 협력적 필터링 시스템에서 아이템의 속성을 고려하지 않는 단점을 보완하기 위해서 선호도에 가장 크게 영향을 미치는 대표 장르를 추출하여 유사한 이웃을 찾아 낼 때 예측에 이용하는 Representative Attribute-Neighborhood 방법을 사용한다. 협력적 필터링의 알고리즘에 군집 아이템 백터 내의 특정 아이템의 선호도를 재계산 하기 위한 연관 사용자 군집 분석을 적용하여 성능 향상을 하였다. 또 초기 평가 문제와 희박성 문제를 해결하기 위하여 Association Rule Hypergraph Partitioning 알고리즘을 사용하여 사용자를 장르별로 군집한다. 새로운 사용자는 Naive Bayes 분류자에 의해 이들 장르 중 하나로 분류된다. 또한, 분류된 장르 내에 속한 사용자들과 새로운 사용자의 유사도를 구하기 위해 Naive Bayes 학습을 통해 사용자가 평가한 아이템에 추정치를 달리 부여한다. 추정치가 부여된 선호도를 피어슨 상관 관계에 적용할 경우 결측치(Missing Value)로 인한 예측의 오류를 적게하여 예측의 정확도를 높일 수 있다. 제안된 방법은 기존의 방법보다 높은 성능을 나타냄을 보인다.

행동 패턴 모델을 이용한 게임 봇 검출 방법 (Behavior Pattern Modeling based Game Bot detection)

  • 박상현;정혜욱;윤태복;이지형
    • 한국지능시스템학회논문지
    • /
    • 제20권3호
    • /
    • pp.422-427
    • /
    • 2010
  • 2004년 이후 정보기술의 성장과 더불어 게임 서비스에 대한 피해 사례가 해 마다 빠르게 증가하고 있는 실정이다. 특히 게임 봇(자동사냥 프로그램)에 대한 피해규모가 가장 크게 조사되고 있으며 이를 방지하기 위한 연구도 활발히 진행되고 있다. 게임 봇은 사용자가 입력하는 키보드나 마우스의 움직임을 대신해 자동으로 게임을 수행하는 프로그램으로 어떠한 사용자의 조작 없이도 게임 속에서의 이득 활동을 무한정 행할 수 있다. 이와 같은 행동은 일반적인 사용자에게 상대적인 불쾌감을 줄 뿐만 아니라 게임의 수명을 단축시키는 등 게임 회사 및 사용자에게 큰 피해를 발생시키고 있어 이를 방지하기 위한 방법이 주목 되고 있다. 기존의 게임 봇 검출 연구들은 단순이 사용자 개인 PC에 설치되어 동작중인 프로그램을 감시하기 때문에 게임 봇 사용자의 조작에 의해 쉽게 피해갈수 있는 단점을 가지고 있다. 따라서 본 논문에서는 게임 서버측면에서 사람과 게임 봇의 행동을 비교하여 게임 봇 사용자들이 조작이나 회피가 힘든 게임 봇 검출 방법을 제안한다. 제안 방법으로는 게임 봇과 사람의 행동 패턴 차이 모델을 정의하고 나이브 베이지안 분류기를 사용하여 게임 봇을 검출한다.

점진적 기계학습 기반의 레이더 위협체 역추정 모델 생성 및 갱신 (Managing the Reverse Extrapolation Model of Radar Threats Based Upon an Incremental Machine Learning Technique)

  • 김철표;노상욱
    • 한국차세대컴퓨팅학회논문지
    • /
    • 제13권4호
    • /
    • pp.29-39
    • /
    • 2017
  • 다양한 전자전 상황에서 단위 위협체에 대하여 전자전 모델링과 시뮬레이션을 수행할 수 있는 통합 전자전 시뮬레이터의 개발 필요성이 대두되고 있다. 본 논문에서는 전자전 상황에서 전자정보 수집신호의 변수를 기반으로 전자파 신호를 발산하는 레이더 위협을 역추정하기 위한 시뮬레이션 시스템의 구성요소를 분석하고, 역추정 모델을 점진적으로 유지할 수 있는 방법을 제안한다. 또한, 실험을 통하여 점진적 역추정 모델 갱신 기법의 유효성 및 개별 역추정 결과의 통합 기법을 평가한다. 개별 역추정 모델의 생성을 위하여 의사결정트리, 베이지안 분류기, 인공신경망 및 유클리디안 거리 측정방식과 코사인 유사도 측정방식을 활용하는 군집화 알고리즘을 이용하였다. 첫 번째 실험에서 레이더 위협체에 대한 역추정 모델을 구축하기 위한 위협 예제의 크기를 점진적으로 증가시키면 역추정 모델의 정확도는 향상되었으며, 이러한 과정이 반복되면 역추정 모델에 대한 정확도는 일정한 값으로 수렴하였다. 두 번째 실험에서는 개별 역추정 모델의 결과를 통합하기 위하여 투표, 가중투표 및 뎀스터-쉐이퍼 알고리즘을 이용하였으며, 역추정 모델의 통합 결과는 뎀스터-쉐이퍼 알고리즘에 의한 역추정 정확도가 가장 좋은 성능을 보였다.

텍스트 마이닝을 활용한 신문사에 따른 내용 및 논조 차이점 분석 (A Study on Differences of Contents and Tones of Arguments among Newspapers Using Text Mining Analysis)

  • 감미아;송민
    • 지능정보연구
    • /
    • 제18권3호
    • /
    • pp.53-77
    • /
    • 2012
  • 본 연구는 경향신문, 한겨레, 동아일보 세 개의 신문기사가 가지고 있는 내용 및 논조에 어떠한 차이가 있는지를 객관적인 데이터를 통해 제시하고자 시행되었다. 본 연구는 텍스트 마이닝 기법을 활용하여 신문기사의 키워드 단순빈도 분석과 Clustering, Classification 결과를 분석하여 제시하였으며, 경제, 문화 국제, 사회, 정치 및 사설 분야에서의 신문사 간 차이점을 분석하고자 하였다. 신문기사의 문단을 분석단위로 하여 각 신문사의 특성을 파악하였고, 키워드 네트워크로 키워드들 간의 관계를 시각화하여 신문사별 특성을 객관적으로 볼 수 있도록 제시하였다. 신문기사의 수집은 신문기사 데이터베이스 시스템인 KINDS에서 2008년부터 2012년까지 해당 주제로 주제어 검색을 하여 총 3,026개의 수집을 하였다. 수집된 신문기사들은 불용어 제거와 형태소 분석을 위해 Java로 구현된 Lucene Korean 모듈을 이용하여 자연어 처리를 하였다. 신문기사의 내용 및 논조를 파악하기 위해 경향신문, 한겨레, 동아일보가 정해진 기간 내에 일어난 특정 사건에 대해 언급하는 단어의 빈도 상위 10위를 제시하여 분석하였고, 키워드들 간 코사인 유사도를 분석하여 네트워크 지도를 만들었으며 단어들의 네트워크를 통해 Clustering 결과를 분석하였다. 신문사들마다의 논조를 확인하기 위해 Supervised Learning 기법을 활용하여 각각의 논조에 대해 분류하였으며, 마지막으로는 분류 성능 평가를 위해 정확률과 재현률, F-value를 측정하여 제시하였다. 본 연구를 통해 문화 전반, 경제 전반, 정치분야의 통합진보당 이슈에 대한 신문기사들에 전반적인 내용과 논조에 차이를 보이고 있음을 알 수 있었고, 사회분야의 4대강 사업에 대한 긍정-부정 논조에 차이가 있음을 발견할 수 있었다. 본 연구는 지금까지 연구되어왔던 한글 신문기사의 코딩 및 담화분석 방법에서 벗어나, 텍스트 마이닝 기법을 활용하여 다량의 데이터를 분석하였음에 의미가 있다. 향후 지속적인 연구를 통해 분류 성능을 보다 높인다면, 사람들이 뉴스를 접할 때 그 뉴스의 특정 논조 성향에 대해 우선적으로 파악하여 객관성을 유지한 채 정보에 접근할 수 있도록 도와주는 신뢰성 있는 툴을 만들 수 있을 것이라 기대한다.

지능형 전망모형을 결합한 로보어드바이저 알고리즘 (Robo-Advisor Algorithm with Intelligent View Model)

  • 김선웅
    • 지능정보연구
    • /
    • 제25권2호
    • /
    • pp.39-55
    • /
    • 2019
  • 최근 은행과 증권회사를 중심으로 다양한 로보어드바이저 금융상품들이 출시되고 있다. 로보어드바이저는 사람 대신 컴퓨터가 포트폴리오 자산배분에 대한 투자 결정을 실행하기 때문에 다양한 자산배분 알고리즘이 활용되고 있다. 본 연구에서는 대표적 로보어드바이저 알고리즘인 블랙리터만모형의 강점을 살리면서 객관적 투자자 전망을 도출할 수 있는 지능형 전망모형을 제안하고 이를 내재균형수익률과 결합하여 최종 포트폴리오를 도출하는 로보어드바이저 자산배분 알고리즘을 새로이 제안하며, 실제 주가자료를 이용한 실증분석 결과를 통해 전문가의 주관적 전망을 대신할 수 있는 지능형 전망모형의 실무적 적용 가능성을 보여주고자 한다. 그동안 주가 예측에서 우수한 성과를 보여주었던 기계학습 방법 중 SVM 모형을 이용하여 각 자산별 기대수익률에 대한 예측과 예측 확률을 도출하고 이를 각각 기대수익률에 대한 투자자 전망과 전망에 대한 신뢰도 수준의 입력변수로 활용하는 지능형 전망모형을 제안하였다. 시장포트폴리오로부터 도출된 내재균형수익률과 지능형 전망모형의 기대수익률, 확률을 결합하여 최종적인 블랙리터만모형의 최적포트폴리오를 도출하였다. 주가자료는 2008년부터 2018년까지의 132개월 동안의 8개의 KOSPI 200 섹터지수 월별 자료를 분석하였다. 블랙리터만모형으로 도출된 최적포트폴리오의 결과가 기존의 평균분산모형이나 리스크패리티모형 등과 비교하여 우수한 성과를 보여주었다. 구체적으로 2008년부터 2015년까지의 In-Sample 자료에서 최적화된 블랙리터만모형을 2016년부터 2018년까지의 Out-Of-Sample 기간에 적용한 실증분석 결과에서 다른 알고리즘보다 수익과 위험 모두에서 좋은 성과를 기록하였다. 총수익률은 6.4%로 최고 수준이며, 위험지표인 MDD는 20.8%로 최저수준을 기록하였다. 수익과 위험을 동시에 고려하여 투자 성과를 측정하는 샤프비율 역시 0.17로 가장 좋은 결과를 보여주었다. 증권계의 애널리스트 전문가들이 발표하는 투자자 전망자료의 신뢰성이 낮은 상태에서, 본 연구에서 제안된 지능형 전망모형은 현재 빠른 속도로 확장되고 있는 로보어드바이저 관련 금융상품을 개발하고 운용하는 실무적 관점에서 본 연구는 의의가 있다고 판단된다.