DOI QR코드

DOI QR Code

Human Gait-Phase Classification to Control a Lower Extremity Exoskeleton Robot

하지근력증강로봇 제어를 위한 착용자의 보행단계구분

  • Received : 2014.04.14
  • Accepted : 2014.06.19
  • Published : 2014.07.31

Abstract

A lower extremity exoskeleton is a robot device that attaches to the lower limbs of the human body to augment or assist with the walking ability of the wearer. In order to improve the wearer's walking ability, the robot senses the wearer's walking locomotion and classifies it into a gait-phase state, after which it drives the appropriate robot motions for each state using its actuators. This paper presents a method by which the robot senses the wearer's locomotion along with a novel classification algorithm which classifies the sensed data as a gait-phase state. The robot determines its control mode using this gait-phase information. If erroneous information is delivered, the robot will fail to improve the walking ability or will bring some discomfort to the wearer. Therefore, it is necessary for the algorithm constantly to classify the correct gait-phase information. However, our device for sensing a human's locomotion has very sensitive characteristics sufficient for it to detect small movements. With only simple logic like a threshold-based classification, it is difficult to deliver the correct information continually. In order to overcome this and provide correct information in a timely manner, a probabilistic gait-phase classification algorithm is proposed. Experimental results demonstrate that the proposed algorithm offers excellent accuracy.

하지근력증강로봇은 인간의 하체에 착용하여 보행능력을 강화하거나 보조하기 위한 장비다. 보행능력을 향상하기 위해 로봇은 착용자의 걷는 움직임을 감지하고 이에 적합한 로봇의 동작을 구동한다. 본 논문에서는 로봇이 착용자의 움직임을 감지하는 방법을 소개하고, 감지된 데이터를 착용자의 현재 보행단계를 의미하는 보행단계상태 정보로 변환하는 보행단계구분 알고리즘을 제시한다. 로봇은 보행단계상태 정보에 따라 현재 필요한 제어모드를 결정하고 로봇구동기를 작동하기 때문에 잘못된 정보가 전달된다면 로봇은 착용자의 보행능력을 향상할 수 없거나 착용자에게 오히려 불편을 줄 수 있다. 따라서 보행단계구분 알고리즘은 항상 정확한 정보를 제공할 수 있어야 한다. 하지만 본 연구에서 사용하는 센서장치의 경우 작은 움직임에도 민감하게 반응하는 특성이 있어 센서데이터를 임계기준으로 구분하는 방법으로는 항상 정확한 보행단계상태 정보를 구할 수 없다. 이러한 특성을 극복하면서 정확한 정보를 제공하기 위해 확률적 구분 방법을 응용한 나이브-플렉시블 베이지안 보행단계구분 알고리즘을 제안하였고, 실험을 통해 제안 방법의 정확성을 비교 분석하였다.

Keywords

References

  1. E. A. Lee, "Cyber physical systems: design challenges," in Proc. IEEE Int. Symp. Object-Oriented Real-Time Distributed Computing(ISORC), pp. 363-369, Orlando, FL, May 2008.
  2. E. A. Lee and S. A. Seshia, Introduction to Embedded Systems. A Cyber-Physical Systems Approach, Retrieved 2011, from http://LeeSeshia.org
  3. M.-G. Won, T.-J. Park, and S.-H. Son, "Present and future of cyber physical systems: from the application's perspective," Inf. Commun. Mag., vol. 30, no. 10, pp. 62-69, Oct. 2013.
  4. J.-M. Park, S.-J. Gang, I.-G Jeon, and W.-T. Kim, "Network-based autonomous control CPS(cyber-physical systems) technology," Inf. Commun. Mag., vol. 30, no. 10, pp. 86-92, Oct. 2013.
  5. M. Choi, J. Lee, and I. Joe, "Design and implementation of the aging-friendly telemedicine system based on CPS for silver town," J. KICS, vol. 37, no. 8, pp. 690-696, Oct. 2012. https://doi.org/10.7840/kics.2012.37C.8.690
  6. C. Schirner, D. Erdogmus, K. Chowdhury, and T. Padir, "The future of human-in-the-loop cyber physical systems," IEEE Computer, vol. 46, no. 1, pp. 36-45, Jan. 2013.
  7. E. Guizzo and H. Goldstein, "The rise of the body bots," IEEE Spectrum, pp. 51-56, Oct. 2005.
  8. A. M. Dollar and H. Herr, "Lower extremity exoskeletons and active orthoses : Challenges and state-of-the-art," IEEE Trans. Robotics, vol. 24, no. 1, pp. 144-158, Feb. 2008. https://doi.org/10.1109/TRO.2008.915453
  9. H.-D. Lee and C.-S. Han, "Technical trend of the lower limb exoskeleton system for the performance enhancement," J. Inst. Control, Robotics Syst., vol. 20, no. 3, pp. 364-371, Feb. 2014. https://doi.org/10.5302/J.ICROS.2014.14.9023
  10. T.-J. Ha, J. Lee, S. Back, S. H. Kim, and J. Y. Lee, "Wearable robot design for industrial application," J. The Korean Soc. Precision Eng., vol. 29, no. 4, pp. 433-440, Apr. 2012. https://doi.org/10.7736/KSPE.2012.29.4.433
  11. Y. Sankai, "HAL: Hybrid assistive limb based on cybernics," Robotics Research, pp. 25-34, Jan. 2011.
  12. K. Suzuki, G. Mito, and H. Kawamoto, "Intention-based walking support for paraplegia patients with robot suit HAL," Advanced Robotics, vol. 21, no. 12, pp. 1441-1469, Oct. 2007.
  13. A. B. Zoss, H. Kazerooni, and A. Chu, "Biomechanical design of the berkeley lower extremity exoskeleton (BLEEX)," IEEE/ASME Trans. Mechatronics, vol. 11, no. 2, pp. 128-138, Apr. 2006. https://doi.org/10.1109/TMECH.2006.871087
  14. H. Kazerooni, R. Steger, and L. Huang, "Hybrid control of the berkeley lower extremity exoskeleton (BLEEX)," The Int. J. Robotics Research, vol. 25, no. 5-6, pp. 561-573, May 2006. https://doi.org/10.1177/0278364906065505
  15. Whittle and Michael, Gait Analysis: An Introduction, 2nd Ed., Oxford: Butterworth- Heinemann, 1996.
  16. V. T. Inman, H. J. Ralston, and F. Todd, Human Locomotion, Williams and Wilkins, 1981.
  17. J. Jung, I. Jang, R. Riener, and H. Park, "Walking intent detection algorithm for paraplegic patients using a robotic exoskeleton walking assistant with crutches," Int. J. Control, Automation, and Syst., vol. 10, no. 5, pp. 954-962, Oct. 2012. https://doi.org/10.1007/s12555-012-0512-4
  18. J. Bae and M. Tomizuka, "Gait phase analysis based on a hidden markov model," J. Mechatronics, vol. 21, no. 6, pp. 961-970, Sept. 2011. https://doi.org/10.1016/j.mechatronics.2011.03.003
  19. H. A. Varol, F. Sup, and M. Goldfarb, "Multiclass real-time intent recognition of a powered lower limb prosthesis," IEEE Trans. Biomedical Eng., vol. 57, no. 3, pp. 542-551, Mar. 2010. https://doi.org/10.1109/TBME.2009.2034734
  20. H. Park, D. J. Kim, C. Seo, and J.-H. Wang, "Development of foot-sensor module for lower-limbs wearable robot," in Proc. KIMST Conf., pp. 1791-1792, 2013.
  21. T. M. Mitchell, Machine Learning, NY: Mcgraw-Hill, 1997.
  22. I. Rish, "An empirical study of the naive bayes classifier," in Proc. Int. Joint Conf. Artificial Intelligence, pp. 41-46, 2001
  23. I. Androutsopoulos, J. Koutsias, K. V. Chandrinos, G. Paliouras, and C. D. Spyropoulos, "An evaluation of naive bayesian anti-spam filtering," in Proc. European Conf. Machine Learning, pp. 9-17, 2000.
  24. Y. Wang, J. Hodges, and B. Tang, "Classification of web documents using a naive bayes method," in Proc. IEEE Int. Conf. Tools with Artificial Intelligence, pp. 560-564, Nov. 2003.
  25. Q. Wang, G. M. Garrity, J. M. Tiedje, and J. R. Cole, "Naive bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy," J. Applied and Environmental Microbiology, vol. 73, no.16, pp. 5261-5267, Aug. 2007. https://doi.org/10.1128/AEM.00062-07
  26. G. H. John and P. Langley, "Estimating continuous distributions in bayesian classifiers," in Proc. Conf. Uncertainty in Artificial Intelligence(UAI'95), pp. 338-345, 1995.