• Title/Summary/Keyword: bayesian classification

Search Result 254, Processing Time 0.031 seconds

Livestock Anti-theft System Using Morphological Feature-based Model (형태학적 특징 기반 모델을 이용한 가축 도난 판단 시스템)

  • Kim, Jun Hyoung;Joo, Yung Hoon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.4
    • /
    • pp.578-585
    • /
    • 2018
  • In this paper, we propose a classification and theft detection system for human and livestock for various moving objects in a barn. To do this, first, we extract the moving objects using the GMM method. Second, the noise generated when extracting the moving object is removed, and the moving object is recognized through the labeling method. And we propose a method to classify human and livestock using model formation and color for the unique form of the detected moving object. In addition, we propose a method of tracking and overlapping the classified moving objects using Kalman filter. Through this overlap determination method, an event notifying a dangerous situation is generated and a theft determination system is constructed. Finally, we demonstrate the feasibility and applicability of the proposed system through several experiments.

A Study on the Extraction of Feature Variables for the Pattern Recognition of Welding Flaws (용접결함의 형상인식을 위한 특징변수 추출에 관한 연구)

  • Kim, Jae-Yeol;Roh, Byung-Ok;You, Sin;Kim, Chang-Hyun;Ko, Myung-Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.11
    • /
    • pp.103-111
    • /
    • 2002
  • In this study, the natural flaws in welding parts are classified using the signal pattern classification method. The storage digital oscilloscope including FFT function and enveloped waveform generator is used and the signal pattern recognition procedure is made up the digital signal processing, feature extraction, feature selection and classifier design. It is composed with and discussed using the distance classifier that is based on euclidean distance the empirical Bayesian classifier. feature extraction is performed using the class-mean scatter criteria. The signal pattern classification method is applied to the signal pattern recognition of natural flaws.

The Feature Extraction of Welding Flaw for Shape Recognition (용접결함의 형상인식을 위한 특징추출)

  • Kim, Jae-Yeol;You, Sin;Kim, Chang-Hyun;Song, Kyung-Seok;Yang, Dong-Jo;Lee, Chang-Sun
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.304-309
    • /
    • 2003
  • In this study, natural flaws in welding parts are classified using the signal pattern classification method. The storage digital oscilloscope including FFT function and enveloped waveform generator is used and the signal pattern recognition procedure is made up the digital signal processing, feature extraction, feature selection and classifier design. It is composed with and discussed using the distance classifier that is based on euclidean distance the empirical Bayesian classifier. Feature extraction is performed using the class-mean scatter criteria. The signal pattern classification method is applied to the signal pattern recognition of natural flaws.

  • PDF

Guitar Tab Digit Recognition and Play using Prototype based Classification

  • Baek, Byung-Hyun;Lee, Hyun-Jong;Hwang, Doosung
    • Journal of the Korea Society of Computer and Information
    • /
    • v.21 no.9
    • /
    • pp.19-25
    • /
    • 2016
  • This paper is to recognize and play tab chords from guitar musical sheets. The musical chord area of an input image is segmented by changing the image in saturation and applying the Grabcut algorithm. Based on a template matching, our approach detects tab starting sections on a segmented musical area. The virtual block method is introduced to search blanks over chord lines and extract tab fret segments, which doesn't cause the computation loss to remove tab lines. In the experimental tests, the prototype based classification outperforms Bayesian method and the nearest neighbor rule with the whole set of training data and its performance is similar to that of the support vector machine. The experimental result shows that the prediction rate is about 99.0% and the number of selected prototypes is below 3.0%.

Document Classification using Weighted Associative Classifier (가중치가 부여된 연관 규칙을 이용한 문서 분류)

  • 김흥남;이기성;조근식
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2003.10a
    • /
    • pp.154-156
    • /
    • 2003
  • 인터넷의 급속한 성장과 더불어 많은 정보와 데이터들을 인터넷을 통하여 얻을 수 있게 되었으며 많은 단체들이 문서들을 웹을 통하여 이용 가능하게 만들고 있다. 이에 따라 다양한 정보와 데이터를 효과적으로 분류하고 검색하는 문서 분류 (Document Classification)에 대한 알고리즘이 다양한 분야에서 널리 연구되어 왔으며 본 논문에서 초점을 두고 있는 전자 도서관 (Digital Library) 분야에서도 활발히 연구되어지고 있다. 하지만 기존의 전자 도서관의 문서 분류 알고리즘들은 문서들의 각 단락의 비중을 고려하지 않은 채 단어들의 발생 빈도에 초점을 두어 많은 잡음 단어 (Noise Term)를 포함하고 그로 인하여 분류 성능이 떨어졌다. 본 논문에서는 문서 단락의 중요도에 따라 다른 .가중치를 부여하여 단어 지지도 (Term Support)가 높은 단어들을 추출하고 그 단어들로 연관 규칙 (Association Rules)을 이용하여 분류 규칙을 생성하는 방법을 제안한다. 제안된 방법의 성능평가를 위해 문서 분류에 널리 쓰이는 나이브 베이지안 분류자 (Na$\square$ve Bayesian Classifier) 및 기존의 단순 연관 규칙 분류자 (Associative Classifier)와 비교 평가하였다. 그 결과, 각 가중치가 부여된 연관 규칙 분류 방법이 나이브 베이지안 분류 방법과 단순 연관 규칙 분류 방법보다 높은 성능을 보였다.

  • PDF

Automatic Email Multi-category Classification Using Dynamic Category Hierarchy and Non-negative Matrix Factorization (비음수 행렬 분해와 동적 분류 체계를 사용한 자동 이메일 다원 분류)

  • Park, Sun;An, Dong-Un
    • Journal of KIISE:Software and Applications
    • /
    • v.37 no.5
    • /
    • pp.378-385
    • /
    • 2010
  • The explosive increase in the use of email has made to need email classification efficiently and accurately. Current work on the email classification method have mainly been focused on a binary classification that filters out spam-mails. This methods are based on Support Vector Machines, Bayesian classifiers, rule-based classifiers. Such supervised methods, in the sense that the user is required to manually describe the rules and keyword list that is used to recognize the relevant email. Other unsupervised method using clustering techniques for the multi-category classification is created a category labels from a set of incoming messages. In this paper, we propose a new automatic email multi-category classification method using NMF for automatic category label construction method and dynamic category hierarchy method for the reorganization of email messages in the category labels. The proposed method in this paper, a large number of emails are managed efficiently by classifying multi-category email automatically, email messages in their category are reorganized for enhancing accuracy whenever users want to classify all their email messages.

A Genre-based Classification of Digital Documents by using Deviation Statistic of Genre-revealing Term and Subject-revealing Term (장르와 주제 범주간 용어 편차정보를 이용한 디지털 문서의 장르기반 분류)

  • 이용배;맹성현
    • Journal of KIISE:Software and Applications
    • /
    • v.30 no.11
    • /
    • pp.1062-1071
    • /
    • 2003
  • A genre-based classification means classifying documents by the purpose for which they were written, not by the semantics or subject areas. Most genre classifying methods in the past were based on the existing documents categorization algorithms and ineffective for feature selections, resulting in low quality classification results. In this research, we propose a new method for automatic classification of digital documents by genre. The genre classifier we developed uses the deviation statistic between the genre-revealing term frequencies and between the subject-revealing term frequencies within a genre. We collected Web documents to evaluate the proposed genre classification method. The experimental results show that the proposed method outperforms a direct application of a kai-square feature selection and bayesian classifier often used for subject classification by proving an excellent accuracy of about 30 percent.

Generation and Selection of Nominal Virtual Examples for Improving the Classifier Performance (분류기 성능 향상을 위한 범주 속성 가상예제의 생성과 선별)

  • Lee, Yu-Jung;Kang, Byoung-Ho;Kang, Jae-Ho;Ryu, Kwang-Ryel
    • Journal of KIISE:Software and Applications
    • /
    • v.33 no.12
    • /
    • pp.1052-1061
    • /
    • 2006
  • This paper presents a method of using virtual examples to improve the classification accuracy for data with nominal attributes. Most of the previous researches on virtual examples focused on data with numeric attributes, and they used domain-specific knowledge to generate useful virtual examples for a particularly targeted learning algorithm. Instead of using domain-specific knowledge, our method samples virtual examples from a naive Bayesian network constructed from the given training set. A sampled example is considered useful if it contributes to the increment of the network's conditional likelihood when added to the training set. A set of useful virtual examples can be collected by repeating this process of sampling followed by evaluation. Experiments have shown that the virtual examples collected this way.can help various learning algorithms to derive classifiers of improved accuracy.

Transmission Delay Estimation-based Forwarding Strategy for Load Distribution in Software-Defined Network (SDN 환경에서 효율적 Flow 전송을 위한 전송 지연 평가 기반 부하 분산 기법 연구)

  • Kim, Do Hyeon;Hong, Choong Seon
    • KIISE Transactions on Computing Practices
    • /
    • v.23 no.5
    • /
    • pp.310-315
    • /
    • 2017
  • In a centralized control structure, the software defined network controller manages all openflow enabled switched in a data plane and controls the telecommunication between all hosts. In addition, the network manager can easily deploy the network function to the application layer with a software defined network controller. For this reason, many methods for network management using a software defined network concept have been proposed. The main policies for network management are related to traffic Quality of Service and resource management. In order to provide Quality of Service and load distribution for network users, we propose an efficient routing method using a naive bayesian algorithm and transmission delay estimation module. In this method, the forwarding path is decided by flow class and estimated transmission delay result in the software defined network controller. With this method, the load on the network node can be distributed to improve overall network performance. The network user also gets better dynamic Quality of Service.

Development of Facial Emotion Recognition System Based on Optimization of HMM Structure by using Harmony Search Algorithm (Harmony Search 알고리즘 기반 HMM 구조 최적화에 의한 얼굴 정서 인식 시스템 개발)

  • Ko, Kwang-Eun;Sim, Kwee-Bo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.21 no.3
    • /
    • pp.395-400
    • /
    • 2011
  • In this paper, we propose an study of the facial emotion recognition considering the dynamical variation of emotional state in facial image sequences. The proposed system consists of two main step: facial image based emotional feature extraction and emotional state classification/recognition. At first, we propose a method for extracting and analyzing the emotional feature region using a combination of Active Shape Model (ASM) and Facial Action Units (FAUs). And then, it is proposed that emotional state classification and recognition method based on Hidden Markov Model (HMM) type of dynamic Bayesian network. Also, we adopt a Harmony Search (HS) algorithm based heuristic optimization procedure in a parameter learning of HMM in order to classify the emotional state more accurately. By using all these methods, we construct the emotion recognition system based on variations of the dynamic facial image sequence and make an attempt at improvement of the recognition performance.