References
- Quinlan, J. R., C4.5 : Programs for Machine Learning, Morgan Kaufmann Publishers, 1993
- Aha, D. and Kibler, D., 'Instance-based Learning ?Algorithms,' Machine Learning, Vol.6, pp. 37-66, 1991 https://doi.org/10.1007/BF00153759
- Breiman, L., 'Stacked Regression,' Machine Learning, Vol.24, No.2, pp. 123-140, 1996 https://doi.org/10.1023/A:1018054314350
- Freund, Y. and Schapire, R. E., 'Experiments with a New Boosting Algorithm,' Proc. of the 13th International Conference on Machine Learning, pp, 148-156, 1996
- Wolpert, D. H., 'Stacked Generalization,' Neural Networks, Vol.5, pp. 241-259, 1992 https://doi.org/10.1016/S0893-6080(05)80023-1
- Aha, D. W., 'Tolerating Noisy, Irrelevant, and Novel Attributes in Instance-based Learning Algorithms,' International Journal of Man-Machine Studies, Vol.36, No.2, pp. 267-287, 1992 https://doi.org/10.1016/0020-7373(92)90018-G
- Kohavi, R. and Sahami, M., 'Error-based and Entropy-based Discretization of Continuous Features,' Proc. of the 2nd International Conference on Knowledge Discovery and Data Mining, pp. 114-119, 1996
- Pazzani, M., 'Constructive induction of Cartesian product attributes,' Information, Statistics and Induction in Science, pp. 66-77, 1996
- Alrnuallim, H. and Dietterich, T. G., 'Learning With Many Irrelevant Features,' Proc. of the 9th National Conference on Artificial Intelligence, pp. 547-552, 1991
- Greiner, R. and Zhou, W., 'Structural Extension to Logistic Regression: Discriminative parameter learning of belief net classifiers,' Proc. of the 18th National Conference on Artificial Intelligence, pp. 167 -173, 2002
- Grossman, D. and Domingos, P., 'Learning Bayesian Network Classifiers by Maximizing Conditional Likelihood,' Proc. of the 21th International Conference on Machine Learning, pp. 361-368, 2004
- John, G. and Langley, P., 'Estimating Continuous Distributions in Bayesian Classifiers,' Proc. of the 11th Conference on Uncertainty in Artificial Intelligence, pp. 338-345, 1995
- Scholkopf, B., Burges, C. J. C. and Smola, A. J., Advance in Kernel Methods - Support Vector Learning, MIT Press, 1998
- Sietsma, J. and Dow, R. J. F., 'Creating Artificial Neural Networks that Generalize. Neural Networks,' IEEE transactions on Neural Networks, Vol.4, pp. 67-79, 1991 https://doi.org/10.1016/0893-6080(91)90033-2
- Cho, S. and Cha, K., 'Evolution of Neural Network Training Set through Addition of Virtual samples,' Proc. of the 1996 IEEE International Conference on Evolutionary Computation, pp, 685-688, 1996 https://doi.org/10.1109/ICEC.1996.542684
- Cho, S., Jang, M. and Chang, S., 'Virtual Sample Generation using a Population of Networks,' Neural Processing Letters, Vol.5, No.2, pp. 83-89, 1997 https://doi.org/10.1023/A:1009653706403
- 김종성, '분류 성능 향상을 위한 가상예제 생성 방안' ?부산대학교 석사학위논문, 2004
- 이유정, 강병호, 강재호, 류광렬, '가상예제를 이용한 naive Bayes 분류기 성능 향상' 한국정보과학회 제32회 추계학술발표회 논문집, Vol.:32, No.2, pp. 655-657, 2005
- Burges, C. and Scholkopf, B., 'Improving the Accuracy and Speed of Support Vector Machines,' Advances in Neural Information Processing System, Vol.9, No.7, 1997
- Ryu, Y. S. and Oh, S. Y., 'SIMPLE Hybrid Classifier for Face Recognition with Adaptively Generated Virtual Data,' Pattern Recognition Letters, 2002 https://doi.org/10.1016/S0167-8655(01)00159-3
- 김종성, 박태진, 강재호, 백납철, 강원회, 이상협, 류광렬, '병합된 예제를 이용한 자동 차 번호판 문자 인식' 한국정보과학회 2004 가을 학술발표논문집(I), 제31권, 제2호, pp. 238-240, 2004
- 이경순, 안동언 '문서분류에서 가상문서기법을 이용한 성능 향상' 정보처리학회논문지, 저11-B권, 제4호, pp. 501-508, 2004 https://doi.org/10.3745/KIPSTB.2004.11B.4.501
- Newman, D. J., Hettich, S., Blake, C. L. and Merz, C. J., UCI Repository of machine learning databases [http://www.ics.uci.edu/-mlearn/MLRepository .html], CA: University of California, Department of Information and Computer Science, Irvine, 1998
- Weka3 - Data Mining with Open Source Machine Learning Software in Java http://www.cs.waikato.ac.nz/-ml/weka
- Witten, I. H. and Frank, E., Data Mining-Practical Machine Learning Tools and Techniques with Java Implementations, Morgan Kaufman Publishers, 1999