The probabilistic fatigue life analysis is one of the common methods to account the uncertainty of parameters on the structural failure. Frequently, the Bayesian approach has been demonstrated as a proper method to show the uncertainty of parameters. In this work, the application of probabilistic fatigue life prediction method for the aircraft structure was studied. This effort was conducted by using the PoF(Probability of Failure) based on Bayesian approach. Furthermore, numerical example was carried out to confirm the validation of the suggested approach. In conclusion, it was shown that the Bayesian approach can calculate the probabilistic fatigue lives and the quantitative value of PoF effectively for the aircraft structural component. Moreover the calculated probabilistic fatigue lives can be utilized to determine the optimized inspection period of aircraft structures.
본 연구는 시간의 순서에 따라 순차적으로 발생한 신호 자료에 있어서, 변화점 검출을 위한 베이지안 방법을 개발하고자 한다. 특히, Reversible Jump MCMC를 이용하여, 차원이 정해지지 않은 모수 공간을 탐색할 수 있는 효율적인 베이지안 추론 모형을 개발한다. 신호가 각 구간에서 선형함수인 경우에 대한 모형과 이해가 용이한 모형을 제안하고, 추정을 위해 고유의 MCMC알고리즘을 개발하였다. 제안된 방법을 모의실험 자료에 적용함으로써 그 정확성 및 효율성을 검증하였고, 실제 자료에도 적용하여 보았다.
The fundamental goal of this study is to minimize the uncertainty of the median fragility curve and to assess the structural vulnerability under earthquake excitation. Bayesian Inference with Markov Chain Monte Carlo (MCMC) simulation has been presented for efficient collapse response assessment of the independent intake water tower. The intake tower is significantly used as a diversion type of the hydropower station for maintaining power plant, reservoir and spillway tunnel. Therefore, the seismic fragility assessment of the intake tower is a pivotal component for estimating total system risk of the reservoir. In this investigation, an asymmetrical independent slender reinforced concrete structure is considered. The Bayesian Inference method provides the flexibility to integrate the prior information of collapse response data with the numerical analysis results. The preliminary information of risk data can be obtained from various sources like experiments, existing studies, and simplified linear dynamic analysis or nonlinear static analysis. The conventional lognormal model is used for plotting the fragility curve using the data from time history simulation and nonlinear static pushover analysis respectively. The Bayesian Inference approach is applied for integrating the data from both analyses with the help of MCMC simulation. The method achieves meaningful improvement of uncertainty associated with the fragility curve, and provides significant statistical and computational efficiency.
Journal of the Korean Data and Information Science Society
/
제22권5호
/
pp.911-919
/
2011
최근 의학에서는 정신 질환과 관련된 위험 인자를 찾는 것이 중요해지고 있다. 인자들을 찾아서 인자들의 특성과 관련성을 파악하면 병을 사전에 예방 할 수 있다. 또한 이 연구는 의학 발전에 많은 도움을 줄 수 있다. 정신 질환에 대한 위험요인은 주로 로지스틱 회귀모형을 사용하여 찾아 왔다. 하지만 이 논문에서는 데이터마이닝 기법 중 CART, C5.0, 로지스틱, 신경망, 베이지안 네트워크 방법을 이용한다. 정신장애 질병인 섬망자료를 적용하여, 최적의 모형인 베이지안 네트워크 방법을 선택하였다. 이 베이지안 네트워크 기법을 위험 요소를 찾는데 사용하고, 이 위험인자 간의 관계를 방사형 그래프를 통해서 규명하였다.
The probability concepts mainly used for rainfall or flood frequency analysis in water resources planning are the frequentist viewpoint that defines the probability as the limit of relative frequency, and the unknown parameters in probability model are considered as fixed constant numbers. Thus the probability is objective and the parameters have fixed values so that it is very difficult to specify probabilistically the uncertianty of these parameters. This study constructs the uncertainty evaluation model using Bayesian MCMC and Metropolis -Hastings algorithm for the uncertainty quantification of parameters of probability distribution in rainfall frequency analysis, and then from the application of Bayesian MCMC and Metropolis- Hastings algorithm, the statistical properties and uncertainty intervals of parameters of probability distribution can be quantified in the estimation of probability rainfall so that the basis for the framework configuration can be provided that can specify the uncertainty and risk in flood risk assessment and decision-making process.
The estimated probabilistic model of wind data based on the conventional approach may have high discrepancy compared with the true distribution because of the uncertainty caused by the instrument error and limited monitoring data. A sequential quadratic programming (SQP) algorithm-based finite mixture modeling method has been developed in the companion paper and is conducted to formulate the joint probability density function (PDF) of wind speed and direction using the wind monitoring data of the investigated bridge. The established bivariate model of wind speed and direction only represents the features of available wind monitoring data. To characterize the stochastic properties of the wind parameters with the subsequent wind monitoring data, in this study, Bayesian inference approach considering the uncertainty is proposed to update the wind parameters in the bivariate probabilistic model. The slice sampling algorithm of Markov chain Monte Carlo (MCMC) method is applied to establish the multi-dimensional and complex posterior distribution which is analytically intractable. The numerical simulation examples for univariate and bivariate models are carried out to verify the effectiveness of the proposed method. In addition, the proposed Bayesian inference approach is used to update and optimize the parameters in the bivariate model using the wind monitoring data from the investigated bridge. The results indicate that the proposed Bayesian inference approach is feasible and can be employed to predict the bivariate distribution of wind speed and direction with limited monitoring data.
This paper considers a Bayesian Network analysis for understanding the heterogeneous cross-category effects of different promotion activities and developing an efficient overall promotion strategy for a large retail store. More specifically we differentiate price reduction promotion and floor promotion and study their heterogeneous effect on consumer purchase behavior under a market basket setting. We then utilize Bayesian networks in identifying complex association structure in market basket dataset by analyzing the effects of different promotional activities and also include the effects of time, family income and size. We find from our Bayesian network analysis that the dominant cross-category promotion effect of price promotion is the indirect effect whereas the dominant cross-category promotion effect of floor promotion is the direct effect. Also, among the demographic variables we find that family size of the household is linked with more product categories compared to income and see that there are differences in the extent of the effects by product category. Finally, we also show the existence of products acting as a network hub and how they can be utilized by retailers faced with a limited marketing budget and suggest a more efficient promotion strategy.
KSII Transactions on Internet and Information Systems (TIIS)
/
제6권9호
/
pp.2370-2387
/
2012
A new security management model based on Rough set and Bayesian learner is proposed in the paper. The model focuses on finding out malicious nodes and getting them under control. The degree of dissatisfaction (DoD) is defined as the probability that a node belongs to the malicious node set. Based on transaction history records local DoD (LDoD) is calculated. And recommended DoD (RDoD) is calculated based on feedbacks on recommendations (FBRs). According to the DoD, nodes are classified and controlled. In order to improve computation accuracy and efficiency of the probability, we employ Rough set combined with Bayesian learner. For the reason that in some cases, the corresponding probability result can be determined according to only one or two attribute values, the Rough set module is used; And in other cases, the probability is computed by Bayesian learner. Compared with the existing trust model, the simulation results demonstrate that the model can obtain higher examination rate of malicious nodes and achieve the higher transaction success rate.
베이지안망은 불확실한 상황 하에서 영역지식을 표현하고 예측하기 위한 좋은 도구로 알려져 있다. 그러나 변수가 많아졌을 때 학습이 어렵고 시간의 요구량이 늘어나게 되어 효율적이고 신회도 높은 탐색에 문제가 있다. 이를 해결하기 위해서 노드의 순서를 정하여 효율적인 구조학습이 가능하도록 한다. 본 논문에서는 각 상황에 따른 확률의 엔트로피를 계산하여 다양한 변수간의 관계나 상호의존적인 상황에서도 오차를 줄이고 신뢰도를 높일 수 있는 효과적인 분류학습모델을 제시한다. 베이지안망 학습 방법 중 일반적으로 널리 알려져 있는 K2알고리즘에서 각 노드의 엔트로피 수치를 계산하여 엔트로피가 낮은 노드의 순서를 결정하여 결과적으로 빠른 시간 안에 최적화된 베이지안망의 모델을 구성하는 효율적인 학습모델을 제시한다.
본 연구에서는 컴퓨터 오락추구 행동의 예측 분석을 목적으로 한국아동 청소년패널조사(KCYPS) 데이터를 대상으로 베이지안 추론을 사용하여 컴퓨터 오락추구 행동과 관련 변수들의 상호의존성과 인과관계를 조사하였다. 이를 위해 일반 베이지안 네트워크를 통한 마코프 블랭킷(Markov Blanket)을 추출하였다. 또한 변수들의 확률을 변화시켜 컴퓨터 오락추구 행동에 대한 변수들의 영향 정도를 분석하였다. 연구결과, 컴퓨터 오락추구 행동은 관련 변수들(학교학습활동, 비행-흡연, 비행-조롱, 팬덤활동, 학교규칙)의 값을 조정하였을 때 유의미하게 변화되는 것으로 나타났다. 본 연구의 결과로 베이지안 추론은 청소년의 컴퓨터 오락추구 행동을 예측하고 조절하는 등 교육 분야에서 활용될 수 있음을 제시하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.