Abstract
Bayesian networks are known as the best tools to express and predict the domain knowledge with uncertain environments. However, bayesian learning could be too difficult to do effective and reliable searching. To solve the problems of overtime demand, the nodes should be arranged orderly, so that effective structural learning can be possible. This paper suggests the classification learning model to reduce the errors in the independent condition, in which a lot of variables exist and data can increase the reliability by calculating the each entropy of probabilities depending on each circumstances. Also efficient learning models are suggested to decide the order of nodes, that has lowest entropy by calculating the numerical values of entropy of each node in K2 algorithm. Consequently the model of the most suitably settled Bayesian networks could be constructed as quickly as possible.
베이지안망은 불확실한 상황 하에서 영역지식을 표현하고 예측하기 위한 좋은 도구로 알려져 있다. 그러나 변수가 많아졌을 때 학습이 어렵고 시간의 요구량이 늘어나게 되어 효율적이고 신회도 높은 탐색에 문제가 있다. 이를 해결하기 위해서 노드의 순서를 정하여 효율적인 구조학습이 가능하도록 한다. 본 논문에서는 각 상황에 따른 확률의 엔트로피를 계산하여 다양한 변수간의 관계나 상호의존적인 상황에서도 오차를 줄이고 신뢰도를 높일 수 있는 효과적인 분류학습모델을 제시한다. 베이지안망 학습 방법 중 일반적으로 널리 알려져 있는 K2알고리즘에서 각 노드의 엔트로피 수치를 계산하여 엔트로피가 낮은 노드의 순서를 결정하여 결과적으로 빠른 시간 안에 최적화된 베이지안망의 모델을 구성하는 효율적인 학습모델을 제시한다.