• 제목/요약/키워드: battery modeling

검색결과 230건 처리시간 0.029초

CFD 해석을 적용한 18650 리튬-이온 배터리 팩의 열 해석 신뢰도 기초 분석 (Basic Investigation into the Validity of Thermal Analysis of 18650 Li-ion Battery Pack Using CFD Simulation)

  • 심창휘;김한상
    • 한국수소및신에너지학회논문집
    • /
    • 제31권5호
    • /
    • pp.489-497
    • /
    • 2020
  • The Li-ion battery is considered to be one of the potential power sources for electric vehicles. In fact, the efficiency, reliability, and cycle life of Li-ion batteries are highly influenced by their thermal conditions. Therefore, a novel thermal management system is highly required to simultaneously achieve high performance and long life of the battery pack. Basically, thermal modeling is a key issue for the novel thermal management of Li-ion battery systems. In this paper, as a basic study for battery thermal modeling, temperature distributions inside the simple Li-ion battery pack (comprises of nine 18650 Li-ion batteries) under a 1C discharging condition were investigated using measurement and computational fluid dynamics (CFD) simulation approaches. The heat flux boundary conditions of battery cells for the CFD thermal analysis of battery pack were provided by the measurement of single battery cell temperature. The temperature distribution inside the battery pack were compared at six monitoring locations. Results show that the accurate estimation of heat flux at the surface of single cylindrical battery is paramount to the prediction of temperature distributions inside the Li-ion battery under various discharging conditions (C-rates). It is considered that the research approach for the estimation of temperature distribution used in this study can be used as a basic tool to understand the thermal behavior of Li-ion battery pack for the construction of effective battery thermal management systems.

하이브리드 자동차용 리튬배터리의 충전량, 용량감퇴, 저항감퇴 예측을 위한 슬라이딩 모드 관측기 설계 (The SOC, Capacity-fade, Resistance-fade Estimation Technique using Sliding Mode Observer for Hybrid Electric Vehicle Lithium Battery)

  • 김일송;이진국
    • 전기학회논문지
    • /
    • 제57권5호
    • /
    • pp.839-844
    • /
    • 2008
  • A novel state of health estimation method for hybrid electric vehicle lithium battery using sliding mode observer has been presented. A simple R-C circuit method has been used for the lithium battery modeling for the reduced calculation time and system resources due to the simple matrix operations. The modeling errors of simple model are compensated by the sliding mode observer. The design methodology for state of health estimation using dual sliding mode observer has been presented in step by step. The structure of the proposed system is simple and easy to implement, but it shows robust control property against modeling errors and temperature variations. The convergence of proposed observer system has been proved by the Lyapunov inequality equation and the performance of system has been verified by the sequence of urban dynamometer driving schedule test. The test results show the proposed observer system has superior tracking performance with reduced calculation time under the real driving environments.

SOC 추정을 위한 밀폐형 Flooded 연축전지의 히스테리시스 모델링 (Hysteresis Modeling of the Sealed Flooded Lead Acid Battery for SOC Estimation)

  • 압둘바싯칸;최우진
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2016년도 전력전자학술대회 논문집
    • /
    • pp.309-310
    • /
    • 2016
  • Sealed flooded lead acid batteries are becoming popular in the industry because of their low cost as compared to their counterparts. State of Charge (SOC) estimation has always been an important factor in battery management systems. For the accurate SOC estimation, open circuit voltage (OCV) hysteresis should be modelled accurately. The hysteresis phenomenon of the sealed flooded lead acid battery is discussed in detail and its ultimate modeling is proposed based on the conventional parallelogram method. The SOC estimation is performed by using Unscented Kalman Filter (UKF) while the parameters of the battery are estimated using Auto Regressive with external input (ARX) method. The validity of the proposed method is verified by the experimental results. The SOC estimation error by the proposed method is less than 3 % all wing the 125hr test.

  • PDF

HEV용 고출력 리튬 폴리머 배터리(LIPB)의 수학적 모델링 기법 연구 (A Study on the Mathematical Modeling Techniques for HEV High-power Lithium-Polymer Battery)

  • 서동우;구자경;김일송
    • 전력전자학회논문지
    • /
    • 제17권6호
    • /
    • pp.532-538
    • /
    • 2012
  • This paper proposes the Mathematical Modeling for HEV High-power Lithium-Polymer Battery. The nonlinear system of the Lithium Battery electrical characteristic express mathematical state equation. We also test charge/discharge and temperature experimental used to identify parameters of the cell find parameter of the least error. The proposed model experimental results is used with battery cycler to verify of the proposed model.

Analysis of Secondary Battery Trends Using Topic Modeling: Focusing on Solid-State Batteries

  • Chunghyun Do;Yong Jin Kim
    • Asian Journal of Innovation and Policy
    • /
    • 제12권3호
    • /
    • pp.345-362
    • /
    • 2023
  • As the widespread adoption and proliferation of electric vehicles continue, the secondary battery market is experiencing rapid growth. However, lithium-ion batteries, which constitute a majority of secondary batteries, present high risks of fire and explosion. Solid-state batteries are thus garnering attention as the next-generation batteries since they eliminate fire hazards and significantly reduce the risk of explosions. Against this background, the study aimed to analyze research trends and provide insights by examining 2,927 domestic papers related to solid-state batteries over the past decade (2013-2022). Specifically, we used topic modeling to extract major keywords associated with solid-state batteries research and to explore the network characteristics across major topics. The changes in research on solid-state batteries were analyzed in-depth by calculating topic dominance by year. The findings provide an overview of the emerging trends in domestic solid-state battery research, and might serve as a valuable reference in shaping long-term research directions.

리튬 이온 전지 팩의 열적 거동 모델링 (Modeling of the Thermal Behavior of a Lithium-Ion Battery Pack)

  • 이재신
    • 에너지공학
    • /
    • 제20권1호
    • /
    • pp.1-7
    • /
    • 2011
  • 전기자동차(Electric Vehicle, EV)와 하이브리드 전기자동차(Hybrid Electric Vehicle, HEV)의 성능과 수명주기 비용은 배터리 팩에 좌우된다. 팩 내부의 비정상적인 온도분포는 전지간의 전기적인 불균형을 가져오고 팩의 성능을 떨어뜨리기 때문에 팩 내부의 온도 균일성은 EV와 HEV용 전지 팩의 최적 성능을 위한 중요한 요소이다. 본 연구에서는 EV와 HEV용 리튬이온전지 팩의 열적 거동을 예측하기 위해 삼차원 전산 모사를 하였다. 전지 팩의 열전도도는 각종 구성요소의 열전도 저항이 직렬과 병렬로 연결되어 있는 것으로 간주하였다. 셀에서의 열 발생량은 전지내부의 전기화학적 반응에 의한 반응열과 전류의 흐름과 내부저항에 의한 열을 고려하여 계산 하였다.

비수계 리튬에어 배터리의 전기화학적 분석 및 확장 칼만 필터를 이용한 SOC 추정기법 (Electrochemical Analysis and SOC Estimation Techniques by Using Extended Kalman Filter of the Non-aqueous Li-air Battery)

  • 윤창오;이평연;김종훈
    • 전력전자학회논문지
    • /
    • 제23권2호
    • /
    • pp.106-111
    • /
    • 2018
  • In this work, we propose techniques for estimating the SOC of Li-air battery. First, we describe and explain the operation principle of the Li-air battery. Energy density of the Li-air battery was compared with that of the Li-ion battery. The capacity and impedance value of the fully discharged voltage is analyzed, and the OCV value for SOC estimation is measured through the electrochemical characterization of the Li-air battery. Estimation value is obtained by SOC modeling through extended Kaman filter and is compared with the measurement value from the Coulomb counting method. Moreover, the performance of SOC estimation circuit is evaluated.

차량용 납축전지의 수명 예측 모델링 (Modeling of the lifetime prediction of a 12-V automotive lead-acid battery)

  • 김성태;이정빈;김의성;신치범
    • 에너지공학
    • /
    • 제22권4호
    • /
    • pp.338-346
    • /
    • 2013
  • 일반 납축전지는 차량의 시동 성능 위주로 최적 설계되어 있다. 최근 차량 전장 시스템과 납축전지를 활용한 연비기술 적용의 증가로 납축전지의 사용 빈도가 늘어나고 있다. 연비기술 적용은 납축전지의 잦은 충방전 반응을 일으켜 납축전지 내구 수명을 단축시키고 있다. 본 연구에서는 납축전지의 노화 수명 모델 구현을 통해 배터리 내구 수명을 예측하는 방법을 제시하고자 한다. 납축전지의 노화에 영향을 미치는 요인은 방전율, 충전 시간, 완충 시간, 온도 조건 등이 있다. 본 논문에서는 납축전지의 동적 거동을 예측하기 위하여 전기화학반응 속도론, 이온의 전달현상, 전극 공극률의 시간에 따른 변화를 고려하였다. 수명 예측을 위해서 노화 메커니즘 중 노화에 가장 큰 영향을 주는 극판 부식 현상과 활물질 탈락을 노화 모델링에 반영하였다. 개발된 납축전지의 노화 모델을 검증하기 위하여 납축전지의 가속 충방전 시험을 수행하였다.

Virtual Environment Modeling for Battery Management System

  • Piao, Chang-Hao;Yu, Qi-Fan;Duan, Chong-Xi;Su, Ling;Zhang, Yan
    • Journal of Electrical Engineering and Technology
    • /
    • 제9권5호
    • /
    • pp.1729-1738
    • /
    • 2014
  • The offline verification of state of charge estimation, power estimation, fault diagnosis and emergency control of battery management system (BMS) is one of the key technologies in the field of electric vehicle battery system. It is difficult to test and verify the battery management system software in the early stage, especially for algorithms such as system state estimation, emergency control and so on. This article carried out the virtual environment modeling for verification of battery management system. According to the input/output parameters of battery management system, virtual environment is determined to run the battery management system. With the integration of the developed BMS model and the external model, the virtual environment model has been established for battery management system in the vehicle's working environment. Through the virtual environment model, the effectiveness of software algorithm of BMS was verified, such as battery state parameters estimation, power estimation, fault diagnosis, charge and discharge management, etc.