• Title/Summary/Keyword: battery level

Search Result 332, Processing Time 0.041 seconds

Evaluation of Hand-Arm Vibration Exposure Level and Work Environment Satisfaction of Workers in Automobile Manufacturer Assembly Process (자동차 제조업체 조립공정 근로자의 국소진동 노출 수준 및 작업환경 만족도 평가)

  • Seong-Hyun Park;Mo-Yeol Kang;Seung Won Kim;Sangjun Choi
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.33 no.2
    • /
    • pp.103-114
    • /
    • 2023
  • Objectives: This study was conducted to evaluate hand-arm vibration (HAV) exposure levels due to the use of power hand tools and to evaluate the determinants in the automobile assembly process. Methods: The exposure level to HAV was evaluated for 30 work lines in five assembly processes (body, engine, chassis, door, and design) that use air-powered tools and battery-powered tools and operate in circulation for two hours. The 2-hr equivalent energy vibration acceleration, A (2), of the task was measured. The 8-hr equivalent energy vibration acceleration, A (8), was estimated in consideration of the number of tasks that can be performed per day by each process. In addition, a survey on the working environment was conducted with workers exposed to vibration. Results: The geometric mean of the HAV exposure level, A (2), for a total of 30 tasks was 2.51 m/s2, and one case was 10.30 m/s2, exceeding TLV (2hr). The HAV exposure level of A (8) was evaluated from 1.03 m/s2 to 5.36 m/s2. A (2) showed a statistically significant difference (P<0.01) for each process, and the chassis process (GM=3.90 m/s2) was the highest. The larger the tool size and the longer the tool length, the higher was the vibration acceleration when using a battery-powered tool than an air-powered tool (P<0.01). Battery-powered tool users showed higher dissatisfaction on all items than did air-powered tool users. Conclusions: As a result of this study, it is necessary to implement a program to reduce the HAV exposure levels.

Operational Characteristic Analysis of Bipolar DC Distribution System using Hardware Simulator (하드웨어 시뮬레이터에 의한 양극형 직류배전시스템의 동작특성 분석)

  • Lee, Jin-Gyu;Lee, Yoon-Seok;Kim, Jae-Hyuk;Han, Byung-Moon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.4
    • /
    • pp.476-483
    • /
    • 2014
  • This paper describes the operational analysis results of the bipolar DC distribution system coupled with the distributed generators. The energy management for AC/DC power trade and the operational principle of distributed generators and energy storages were first analyzed by computer simulation with PSCAD/EMTDC software. After then a hardware simulator for the bipolar DC distribution system was built, which is composed of the grid-tied three-level inverter, battery storage, super-capacitor storage, and the voltage balancer. Various experiments with the hardware simulator were carried out to verify the operation of bipolar DC distribution system. The developed simulator has an upper-level controller which operates in connection with the controllers for each distributed generator and the battery energy storage based on CAN communication. The developed hardware simulator are possible to use in designing the bipolar DC distribution system and analyzing its performance experimentally.

A Design and Control of Bi-directional Non-isolated DC-DC Converter with Coupled Inductors for Rapid Electric Vehicle Charging System

  • Kang, Taewon;Kim, Changwoo;Suh, Yongsug;Park, Hyeoncheol;Kang, Byungil;Kim, Daegyun
    • Proceedings of the KIPE Conference
    • /
    • 2011.07a
    • /
    • pp.429-430
    • /
    • 2011
  • This paper presents a simple and cost-effective stand-alone rapid battery charging system of 30kW for electric vehicles. The proposed system mainly consists of active front-end rectifier of neutral point clamped 3-level type and non-isolated bi-directional dc-dc converter of multi-phase interleaved half-bridge topology with coupled inductors. The charging system is designed to operate for both lithium-polymer and lithium-ion batteries. The complete charging sequence is made up of three sub-interval operating modes; pre-charging mode, constant-current mode, and constant-voltage mode. The pre-charging mode employs the staircase shaped current profile to accomplish shorter charging time while maintaining the reliable operation of the battery. The proposed system is able to reach the full-charge state within less than 16min for the battery capacity of 8kWh by supplying the charging current of 67A. The optimal discharging algorithm for Vehicle to the Grid (V2G) operation has been adopted to maintain the discharging current of 1C. Owing to the simple and compact power conversion scheme, the proposed solution has superior module-friendly mechanical structure which is absolutely required to realize flexible power expansion capability in a very high-current rapid charging system.

  • PDF

A Scheduling Method using Task Partition for Low Power System (저전력 시스템을 위한 BET기반 태스크 분할 스케줄링 기법)

  • Park, Sang-Oh;Lee, Jae-Kyoung;Kim, Sung-Jo
    • The KIPS Transactions:PartA
    • /
    • v.18A no.3
    • /
    • pp.93-98
    • /
    • 2011
  • While the use of battery-powered embedded systems has been rapidly increasing, the current level of battery technology has not kept up with the drastic increase in power consumption by the system. In order to prolong system usage time, the battery size needs to be increased. The amounts of power consumption by embedded systems are determined by their hardware configuration and software for manipulating hardware resources. In spite of that, the hardware provides features for lowering power consumption, if those cannot be utilized efficiently by software including operating system, reduction in power consumption is not optimized. In this paper, we propose a BET(Break Even Time)-based scheduling method using task partition to reduce power consumption of multimedia applications in a mobile embedded system environment.

A Performance Evaluation of a Heat Dissipation Design for a Lithium-Ion Energy Storage System Using Infrared Thermal Imaging (적외선 열화상을 활용한 리튬 이온 ESS의 방열설계 성능평가에 관한 연구)

  • Kim, Eun-Ji;Lee, Gyung-Il;Kim, Jae-Yeol
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.5
    • /
    • pp.105-110
    • /
    • 2020
  • The global battery market is rapidly growing due to the development of vehicles(EV) and wireless electronic products. In particular logistics robots, which hielp to produce EVs, have attracted much interest in research in Korea Because logistics sites and factories operate continuously for 24 hours, the technology that can dramatically increase the operation time of the logistics equipment is rapidly developing, and various high-level technologies are required for the batteries used in. for example, logistics robots. These required technologies include those that enable rapid battery charging as well wireless charging to charge batteries while moving. The development of these technologies, however, result in increasing explosions and topical accidents involving rapid charging batteries These accidents due to the thermal shock caused by the heat generated during the charging of the battery cell. In this study, a performance evaluation of a heat dissipation design using infrared thermal imaging was performed on an energy storage systrm(Ess) applied with an internal heat conduction cooling method using a heating plate.

Control of a Soft Recoil System for Recoil Force Reduction (사격충격력 저감을 위한 연식주퇴계의 제어)

  • Shin, Chul-Bong;Bae, Jae-Sung;Hwang, Jai-Hyuk;Kang, Kuk-Jeong;Ahn, Sang-Tae;Han, Tae-Ho
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.7
    • /
    • pp.764-774
    • /
    • 2008
  • A fire-out-of-battery(FOOB) mechanism, which is a new recoil technology, can reduce dramatically the level of a recoil force compared to the conventional recoil system. The FOOB mechanism pre-accelerates the recoil parts in direction opposite of conventional recoil before ignition. This momentum of the recoil parts due to pre-acceleration can reduce the firing impulse. In this paper, the dynamics of the recoil system with this FOOB mechanism is formulated and simulated numerically. The results of the simulation show that the FOOB system can reduce the recoil force and stroke compared to the conventional system under normal condition. When the fault modes happen, the FOOB system may not perform well and may be damaged seriously due to excessive recoil force and stroke. Hence, the control of the fault modes is necessary to achieve the normal operation of the FOOB system. The results that an additional MR damper enables the FOOB system to perform well under all firing condition.

Optimal Harvest-Use-Store Design for Delay-Constrained Energy Harvesting Wireless Communications

  • Yuan, Fangchao;Jin, Shi;Wong, Kai-Kit;Zhang, Q.T.;Zhu, Hongbo
    • Journal of Communications and Networks
    • /
    • v.18 no.6
    • /
    • pp.902-912
    • /
    • 2016
  • Recent advances in energy harvesting (EH) technology have motivated the adoption of rechargeable mobile devices for communications. In this paper, we consider a point-to-point (P2P) wireless communication system in which an EH transmitter with a non-ideal rechargeable battery is required to send a given fixed number of bits to the receiver before they expire according to a preset delay constraint. Due to the possible energy loss in the storage process, the harvest-use-and-store (HUS) architecture is adopted. We characterize the properties of the optimal solutions, for additive white Gaussian channels (AWGNs) and then block-fading channels, that maximize the energy efficiency (i.e., battery residual) subject to a given rate requirement. Interestingly, it is shown that the optimal solution has a water-filling interpretation with double thresholds and that both thresholds are monotonic. Based on this, we investigate the optimal double-threshold based allocation policy and devise an algorithm to achieve the solution. Numerical results are provided to validate the theoretical analysis and to compare the optimal solutions with existing schemes.

Dynamic Characteristics of a Soft Recoil System (연식주퇴 시스템의 동적 특성 해석)

  • Bae, Jae-Sung;Shin, Chul-Bong;Hwang, Jai-Hyuk;Kang, Kuk-Jeong
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.11 no.4
    • /
    • pp.13-19
    • /
    • 2008
  • In order to reduce the level of recoil force, new recoil technology must be employed. The present study discusses a soft-recoil system that can reduce dramatically the recoil force. The firing sequence of the soft recoil system is radically different from that of a conventional system. The gun is latched and preloaded in its out-of-battery position prior to firing. When unlatched, the gun is accelerated and forward momentum is imparted to the recoiling parts. This momentum is opposed by the ballistic force imparted by firing and the recoil force and stoke will be reduced. In the present study, the soft-recoil system with hydraulic dampers is simulated and its characteristics are investigated theoretically. The results of the simulation show that the soft-recoil system could dramatically reduce the recoil force and the recoil stroke compared to the conventional recoil systems. However, the soft-recoil system was not able to perform well when the firing fault modes like prefire, hang-fire, and misfire happen. Hence, we need to employ a control algorithm to prevent the damage of the recoil system due to these fault mode.

Rapid Electric Vehicle Charging System with Enhanced V2G Performance

  • Kang, Taewon;Kim, Changwoo;Suh, Yongsug;Park, Hyeoncheol;Kang, Byungik;Kim, Simon
    • Proceedings of the KIPE Conference
    • /
    • 2012.07a
    • /
    • pp.201-202
    • /
    • 2012
  • This paper presents a simple and cost-effective stand-alone rapid battery charging system of 30kW for electric vehicles. The proposed system mainly consists of active front-end rectifier of neutral point clamped 3-level type and non-isolated bi-directional dc-dc converter of multi-phase interleaved half-bridge topology. The charging system is designed to operate for both lithium-polymer and lithium-ion batteries. The complete charging sequence is made up of three sub-interval operating modes; pre-charging mode, constant-current mode, and constant-voltage mode. Each mode is operated according to battery states: voltage, current and State of Charging (SOC). The proposed system is able to reach the full-charge state within less than 16min for the battery capacity of 8kWh by supplying the charging current of 67A. The optimal discharging algorithm for Vehicle to the Grid (V2G) operation has been adopted to maintain the discharging current of 1C. Owing to the simple and compact power conversion scheme, the proposed solution has superior module-friendly mechanical structure which is absolutely required to realize flexible power expansion capability in a very high-current rapid charging system. Experiment waveforms confirm the proposed functionality of the charging system.

  • PDF

Bus Voltage Drop Analysis Caused by Payload Operation of LEO Satellite (저궤도 인공위성 탑재체 구동에 따른 버스 전압 강하 해석)

  • Park, Hee-Sung;Jang, Jin-Baek;Park, Sung-Woo;Lee, Sang-Kon
    • Aerospace Engineering and Technology
    • /
    • v.9 no.2
    • /
    • pp.57-62
    • /
    • 2010
  • SAR payload of LEO satellite will consume about 150A current. This high current makes the voltage drop between battery, satellite main bus and payload interface, which cannot guarantee the input voltage level of the satellite electrical unit and payload. So, it is necessary to predict the main bus and payload input voltage level when the payload works. In this paper, the worst case analysis of the harness and contact resistance was executed and predicted the voltage drop when the payload works.