Lee, Jaehwan;Choi, June;Roh, Hongchan;Shin, Ji Sun
KSII Transactions on Internet and Information Systems (TIIS)
/
v.12
no.11
/
pp.5252-5268
/
2018
To support a large-scale Hadoop cluster, Hadoop heartbeat messages are designed to deliver the significant messages, including task scheduling and completion messages, via piggybacking to reduce the number of messages received by the NameNode. Although Hadoop is designed and optimized for high-throughput computing via batch processing, the real-time processing of large amounts of data in Hadoop is increasingly important. This paper evaluates Hadoop's performance and costs when the heartbeat period is controlled to support latency sensitive applications. Through an empirical study based on Hadoop 2.0 (YARN) architecture, we improve Hadoop's I/O performance as well as application performance by up to 13 percent compared to the default configuration. We offer a guideline that predicts the performance, costs and limitations of the total system by controlling the heartbeat period using simple equations. We show that Hive performance can be improved by tuning Hadoop's heartbeat periods through extensive experiments.
작업배치스케줄러는 다수의 사용자에게 클러스터 시스템의 계산 자원을 효과적으로 제공하는 유용한 시스템 소프트웨어이다. 한국과학기술정보연구원에서는 작업배치스케줄러인 PBS와 SLURM을 이용하여 슈퍼컴퓨터 5호기 메인시스템인 누리온과 뉴론을 각각 공동활용서비스하고 있다. 본 논문에서는 뉴론의 제한된 계산자원을 다수의 연구자들에게 효율적으로 서비스하기 위해 SLURM 작업배치스케줄러의 공유노드 정책을 적용하는 방안과 작업통계 분석 기법을 소개한다.
VANET(Vehicular Ad-hoc Network)는 MANET(Mobile Ad-hoc Network)의 한 형태로, 다수의 차량들이 무선통신을 이용하여 차량 간 통신 또는 차량과 RSU(Road Side Unit)사이의 통신을 제공하는 차세대 네트워킹 기술이다. VANET환경에서 기존의 그룹 서명 방식을 이용한 메시지 서명 및 검증이 이루어진다면, 통신 차량이 많아질수록 오버헤드가 발생하는 단점을 지니고 있다. 이에 따라, 본 논문에서는 다수의 차량 간 통신 시에 보다 효율적인 메시지 검증을 위해 Bloom Filter를 이용한 메시지 일괄 검증 기법을 제안한다.
한국과학기술정보연구원에서는 슈퍼컴퓨터 5호기 시스템 및 가속기 기반 시스템을 국내 연구자들에게 서비스를 하고 있다. 시스템 관리자들은 시스템 상태 조회 및 통계 정보 산출등의 목적으로 배치 작업 관리 솔루션에 주기적으로 다양한 정보의 요청을 수행한다. 빈번한 정보 요청은 작업관리 솔루션에 부하를 줄 수 있다. 본 논문에서는 사용자들의 배치 작업 관리를 위해 사용하는 배치 작업 관리 솔루션인 PBSPro와 SLURM을 활용한 효율적인 시스템 모니터링 기법을 설계하고자 한다.
최근 스마트폰과 같은 디지털 기기의 보급과 함께 개인화, 맞춤형 서비스의 수요가 늘어나면서 추천 서비스가 주목을 받고 있다. 세션 기반(Session based) 추천 시스템은 사용자의 아이템 선호에 따른 순서 정보를 고려한 학습 추천 모델로, 다양한 산업 분야에서 사용되고 있다. 세션 기반 추천 시스템 중 SASRec(Self-Attentive Sequential Recommendation) 모델은 MC/CNN/RNN 기반의 기존 여러 순차 모델들에 비하여 효율적인 성능을 보인다. 본 연구에서는 SASRec 모델의 하이퍼파라미터 중 배치 사이즈(Batch Size), 학습률 (Learning Rate), 히든 유닛(Hidden Unit)을 조정하여 실험함으로써 하이퍼파라미터에 의한 성능 변화를 분석하였다.
Long-tailed datasets have an imbalanced distribution because they consist of a different number of data samples for each class. However, there are problems of the performance degradation in tail-classes and class-accuracy imbalance for all classes. To address these problems, this paper suggests a learning method for training of long-tailed dataset. The proposed method uses and combines two methods; one is a resampling method to generate a uniform mini-batch to prevent the performance degradation in tail-classes, and the other is a reweighting method to address the accuracy imbalance problem. The purpose of our proposed method is to train the learning models to have uniform accuracy for each class in a long-tailed dataset.
동기식 분산 딥러닝 기법은 그래디언트 계산 작업을 다수의 워커가 나누어 병렬 처리함으로써 모델 학습 과정을 효율적으로 단축시킨다. 배치 사이즈는 이터레이션 단위로 처리하는 데이터 개수를 의미하며, 학습 속도 및 학습 모델의 품질에 영향을 미치는 중요한 요소이다. 멀티 GPU 환경에서 작동하는 분산 학습의 경우, 가용 GPU 메모리 용량이 커짐에 따라 선택 가능한 배치 사이즈의 상한이 증가한다. 하지만 배치 사이즈가 학습 속도 및 학습 모델 품질에 미치는 영향은 GPU 활용률, 총 에포크 수, 모델 파라미터 개수 등 다양한 변수에 영향을 받으므로 최적값을 찾기 쉽지 않다. 본 연구는 동기식 분산 딥러닝 환경에서 실험을 통해 최적의 배치 사이즈 선택에 영향을 미치는 주요 요인을 분석한다.
사용자 응용 프로그램의 특징을 분석하고 효율적인 시스템 운영을 통하여 사용자 프로그램 최적화를 지원하기 위하여 소프트웨어 프로파일링을 수행한다. 특히 국가 슈퍼컴퓨터인 누리온과 같이 8,400대가 넘는 계산노드로 구성된 클러스터 시스템에서 응용 프로그램의 프로파일링 데이터를 사용자의 개입없이 수집하고 데이터를 분석하는 것에는 한계가 있다. 본 연구에서는 배치작업 스케줄러를 활용하여 사용자의 개입 없이 응용 프로그램의 프로파일링 데이터를 수집하기 위한 방법을 제안한다. 그리고 제안한 방법을 누리온에서 구현하고 사용자 응용 프로그램이 실행될 때 프로파일링 데이터가 수집되는 것을 확인한다.
UAF(Use-After-Free)는 heap 영역에서 메모리 오염을 발생시킬 수 있는 취약점이다. UAF를 방지하기 위해 다양한 방법으로 관련 연구가 활발히 이루어지고 있지만, 아직까지 여러 오버헤드 측면에서 모두 좋은 성능을 발휘한 결과는 나오지 않고 있다. 할당자 수준에서의 수정을 통하여, UAF 취약점 방어를 보장하는 동시에 높은 성능과 낮은 오버헤드를 발생시킬 수 있는 방법을 제시한다. 본 논문에서는 UAF 취약점 및 관련 연구를 소개하고, 이를 기반으로 UAF 취약점에 대처할 수 있는 방법을 제시한다.
본 논문에서는 CFD(Computational Fluid Dynamics) 프로그램의 효율적인 수행을 위한 그리드 시스템 META(Metacomputing Environment using Test-run Application)의 구현을 위한 환경 구축에 대해서 기술한다. META는 그리드 시스템을 기반으로 하기 때문에 META의 구현을 위해서는 먼저 그리드 시스템 환경을 구축하여야 한다. 이를 위해 PBS(Portable Batch System), GT4(Globus Toolkit4), MPI(Massage Passing Interface), PVM(Parallel Virtual Machine), PVMmaker 총 5개의 프로그램이 필요하다. PBS는 각 노드로의 작업 분할을, GT4는 그리드 시스템 미들웨어 역할을, MPI와 PVM, PVMmaker는 병렬 프로그래밍 수행 및 컴파일을 위해서 사용이 된다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.