• Title/Summary/Keyword: base of support

Search Result 1,084, Processing Time 0.028 seconds

Vibration Analysis of the Base Supported Washing Machine Considering Frictional Effect in Snubber (스너버에서의 마찰을 고려한 하부지지형 세탁기의 동특성 연구)

  • 최상현;김주호;한동철;한창소
    • Journal of KSNVE
    • /
    • v.5 no.1
    • /
    • pp.85-93
    • /
    • 1995
  • The vibration of the dehydration process in a washing machine is important problem that affects the performance of products. In this paper, the upper structure of a washing machine is modeled as rigid body suspension system and, by numerical analysis, the amplitude of a spin basket and the transfer moment at a base plate are calculated. To examine the vibrational characteristics according to design variable change, the friction coefficient in anubber, the radius of curvature, the stiffness coefficient, initial length and locations of support springs are considered in the analysis. Experimental results are compared with those of analysis.

  • PDF

Lead Tolerance of Noble Metal Catalysts for CO Oxidation

  • Chang, Tu-Won;Sohn, Youn-Soo
    • Bulletin of the Korean Chemical Society
    • /
    • v.7 no.1
    • /
    • pp.12-15
    • /
    • 1986
  • Lead tolerance of $Pt/Al_2O_3$ catalysts was evaluated for CO oxidation depending on the properties of the alumina supports and base metals added as promoter. Among the four different alumina supports, the support with a large macropore volume (0.45 cc/g) and 5% Ce has shown the best resistence to lead poisoning. Most of the base metals added to the Pt-catalysts were found to be ineffective for improving lead resistence, but boron has shown an excellent lead tolerence, although it decreases the initial catalytic activity.

Design theory and method of LNG isolation

  • Sun, Jiangang;Cui, Lifu;Li, Xiang;Wang, Zhen;Liu, Weibing;Lv, Yuan
    • Earthquakes and Structures
    • /
    • v.16 no.1
    • /
    • pp.1-9
    • /
    • 2019
  • To provide a simplified method for the base isolation design of LNG tanks, such as $16{\times}104m^3$ LNG tanks, we conducted a derivation and calculation example analysis of the dynamic response of the base isolation of LNG storage tanks, using dynamic response analysis theory with consideration of pile-soil interaction. The ADINA finite element software package was used to conduct the numerical simulation analysis, and compare it with the theoretical solution. The ground-shaking table experiment of LNG tank base isolation was carried out simultaneously. The results show that the pile-soil interaction is not obvious under the condition of base isolation. Comparing base isolation to no isolation, the seismic response clearly decreases, but there is less of an effect on the shaking wave height after adopting pile top isolation support. This indicates that the basic isolation measures cannot control the wave height. A comparison of the shaking table experiment with the finite element solution and the theoretical solution shows that the finite element solution and theoretical solution are feasible. The three experiments are mutually verified.

A new base shear equation for reliability-based design of steel frames

  • Hakki Deniz Gul;Kivanc Taskin
    • Earthquakes and Structures
    • /
    • v.27 no.1
    • /
    • pp.31-39
    • /
    • 2024
  • The reliability-based seismic design of steel frames is a complex process that incorporates seismic demand with a structural capacity to attain safe buildings aligned with specified constraints. This paper introduces an efficient base shear force formulation to support the reliability-based design process of steel frames. The introduced base shear force equation combines the seismic demand statistics with the reliability objective to calculate a fictitious base shear force for linear static analysis. By concentrating on the seismic demand and promising to meet a certain level of reliability, the equation converts the reliability-based seismic design problem to a deterministic one. Two code-compliant real-size steel moment frames are developed according to different reliability objectives to demonstrate the competency of the proposed formula. The nonlinear dynamic analysis method is used to assess the seismic reliability of the constructed frames, and the numerical results validate the credibility of the suggested formulation. The base shear force calculation method regarding seismic reliability is the main finding of this study. The ease of use makes this approach a potent tool for design professionals and stakeholders to make rapid risk-informed decisions regarding steel moment frame design.

The Effect of Knee Strategy on Limits of Stability in Standing Balance (기립균형시 슬관절 전략이 안정성 한계에 미치는 영향)

  • Kwon, Hyuk-Cheol;Jeong, Dong-Hoon
    • Physical Therapy Korea
    • /
    • v.6 no.3
    • /
    • pp.11-21
    • /
    • 1999
  • Human balance is maintained through a complex process involving sensory detection of body motions, integration of sensorimotor information within the central nervous system, and execution of appropriate musculoskeletal responses. The basic task of balance is to position the body center of gravity (COG) over some portion of the support base. When the COG extends beyond the base of support, the person has exceeded the limits of stability (LOS). At this point, a step or stumble is required to prevent a fall. Automatic postural responses operate to keep the COG over the base of support. They are a set of functionally organized, long-loop responses that act to keep the body in a state of equilibrium. There are four commonly identified automatic postural responses, or strategies. These are ankle strategy, hip strategy, suspensory (knee) strategy, and stepping strategy. Thus, the purpose of this study was to evaluate the LOS using various knee strategies. Forty subjects participated in this study. The subjects were comprised of 20 males and 20 females who were without neurologic, orthopaedic or balance performance impairments. The LOS was measured with a Balance Performance Monitor (BPM) Dataprint Software Version 5.3. The results of this study were as follows: 1) Knee joint angle which is to increase stability of standing balance with using knee strategy was at mid-range. 2) There were statistically significant differences in anteroposterior LOSs according to the knee strategy. 3) There were no statistically significant differences in mediolateral LOSs according to the knee strategy. 4) There were statistically significant differences of anteroposterior LOSs with using knee strategy according to gender. 5) There were no statistically significant differences in mediolateral LOSs with using knee strategy according to gender.

  • PDF

Effects of the Width in the Base of Support on Trunk and Lower Extremity Muscle Activation During Upper Extremity Exercise (상지운동 동안 기저면의 넓이 변화가 체간과 하지의 근 활성도에 미치는 영향)

  • Yun, Hye-Seon;Choi, Houng-Sik;Kim, Tack-Hoon;Cynn, Heon-Seock;Lee, Kang-Sung
    • Physical Therapy Korea
    • /
    • v.11 no.3
    • /
    • pp.43-50
    • /
    • 2004
  • This study was designed to determine the effects of different widths in the base of support (BOS) on trunk and lower extremity muscle activation during upper extremity exercise. Twenty-seven healthy male subjects volunteered for this study. Exercises were performed for a total of 10 trials with a load of 10 repetitions maximum (10 RM) for each of the various widths of BOS (10 cm, 32 cm, 45 cm). The width of a BOS is the distance between each medial malleoli when a subject was in a comfortable standing position. Electromyography was used to determine muscle activation. Surface bipolar electrodes were applied over the tibialis anterior, medial gastrocnemius, biceps femoris, rectus femoris, gluteus maximus, upper rectus abdominis, and elector spinae muscle. Electromyographic (EMG) root mean square (RMS) signal intensity was normalized to 5 seconds of EMG obtained with a maximal voluntary isometric contraction (MVIC). The data were analyzed by atwo-factor analysis of variance (ANOVA) with repeated-measures ($3{\times}7$) and Bonferroni post hoc test. The results were as follows: (1) There were significant differences in the width of the BOS (p=.006). (2) The post hoc test showed significant differences with the BOS between 10 cm and 32 cm, between 10 cm and 45 cm and between 32 cm and 35 cm (p=.008, p=.003, p=.011). (3) There was no interaction with the BOS and muscle. (p=.438) There were no significant differences in the muscle activation (p=.215).

  • PDF

The Influence of Foot Position on Standing Balance on an Unstable Base of Support

  • Lee, Jun Cheol
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.10 no.2
    • /
    • pp.84-94
    • /
    • 2018
  • The purpose of this study was to compare the balance ability at different foot positions using K A T 2000 (Berg, Inc, vista, CA.1994). Thirty (male 15, female 15) normal subjects participated in this study. All subjects were tested at a one leg position or a two leg position that were toe-in $25^{\circ}$, toe-out $25^{\circ}$, and $45^{\circ}$. The starting position was where the subject crossed their arms across the chest and flexed knees slightily. The results of each test were displayed on a screen in a score format, which indicated balance index. These collected data were analyzed by using one way ANOVA, and t-test. The results of this study were as follows: When changing the angle of the foot in the one-foot and two-foot standing positions, there was no statistically significant difference, but the balance performance with the foot rotated by $25^{\circ}$ was better than that with the foot rotated by $45^{\circ}$. When changing the direction of the foot in the one-foot and two-foot standing positions, there was no statistically significant difference, but the balance performance with the foot rotated laterally was better - except for the case when the foot was medially rotated by $25^{\circ}$ in the right-foot static standing position. When the feet were medially rotated by $25^{\circ}$ in the two-foot static standing position, and were medially rotated by $25^{\circ}$ and $45^{\circ}$ in the one-foot static standing position, the balance performance of females was better than that of males. In this study, it was found that the balance performance of the subjects changed when the position of the foot was shifted on an unstable base of support. However, there was little correlation between balance performance and the height, weight and foot length of the subjects. It is necessary to conduct a follow-up study targeting various age groups and those with various diseases using an unstable platform or applying different physical or visual conditions, such as the length of the legs. Physical therapists need to consider the position of the foot in clinical settings for a better balance training or assessment.

A low powered handover scheme for the green base station of cellular networks (셀룰러 망에서 그린 기지국을 위한 저전력 핸드오버 방안)

  • Park, Sangjoon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.1
    • /
    • pp.91-96
    • /
    • 2015
  • Heterogeneous cellular networks support various wireless environments for mobile service. Recently, data services as well as voice services are exponentially increased in cellular networks and the technical transition of LTE-A and IEEE 802.16m so that more base stations are requested to provide suitable service. Base stations consume most of energy in cellular networks, and the energy saving is needed for the base station. In this paper, we propose a saving power scheme by the dynamic energy management. In this paper we consider the simulation evaluations of handover for the low powered base station.

Comparison of Muscle Activity of Thigh and Plantar Pressure according to the Change in Base of Support during Lunge (런지 시 기저면 변화에 따른 넙다리 근육의 근활성도와 족저압 비교 연구)

  • Lee, Jeon-Hyeong;Lee, Myoung-Hee;Kim, Gi-Chul
    • PNF and Movement
    • /
    • v.15 no.3
    • /
    • pp.343-351
    • /
    • 2017
  • Purpose: This study aimed to suggest effective lunge exercise methods for various purposes by comparing differences in the muscle activity of thigh and plantar pressure according to changes in base of support during lunge exercises. Methods: The subjects were 20 college students who agreed to participate in the experiment. They performed three types of lunges-a basic lunge (BL), wide lunge (WL), and narrow lunge (NL). In a static position during each lunge, the muscle activity of the thigh and plantar pressure were measured. Each movement was maintained for 7 seconds, and the muscle activity for the 3 seconds in the middle was measured and analyzed. The plantar pressure was divided into six areas for analysis. The subjects randomly performed the lunges to prevent the influence of an experimental sequence. Each movement was performed three times, and the mean value of the three measurements was analyzed. Results: The analysis of muscle activities in the thigh during the three lunge movements showed statistically significantly higher muscle activity of biceps femoris in WL and NL than BL. Moreover, the analysis of plantar force showed statistically significant differences between BL and WL and WL and NL on the medial-forefoot and medial-midfoot, as well as between BL and WL and BL and NL on the lateral-midfoot. The analysis of plantar contact pressure exhibited statistically significant differences between BL and NL and WL and NL on the medial-forefoot, as well as a statistically significant difference between WL and NL on the medial-midfoot and lateral-hindfoot. Conclusion: This study suggests that changing the base of support during lunges can be useful to suit the purposes of various rehabilitation programs.

The Development of Carrier Aviation Support System Architecture using DoDAF (DoDAF를 이용한 항모 항공지원시스템 아키텍처 개발)

  • Lee, Seung Do;Park, Peom
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.11 no.1
    • /
    • pp.33-39
    • /
    • 2015
  • This paper describes a development of aircraft carrier aviation support system architecture using DoDAF. The aircraft carrier, a warship performing a role of mobile sea air base in offensive and defense mission, is super system that is comprised of carrier itself and carrier-based airwing. Performing critical role in step with aviation operations in carrier-airwing interactions, the aviation support system of aircraft carrier is also system of systems. It requires a complex and integrated approach based on systems engineering in establishing concept of this complex systems. In this view, this study establishes an operational scenario and derives operational requirements by identifying aviation operations environment on deck of aircraft carrier. The study presents the operational architecture of the carrier aviation support system by using DoDAF and CASE tool CORE.