• Title/Summary/Keyword: base Isolation System

Search Result 262, Processing Time 0.022 seconds

Study of Characteristics of Smart Base Isolation System with MR Damper for Regions of Low-to-Moderate Seismicity (중약진지역에 대한 MR 감쇠기로 구성된 스마트 면진시스템의 특성연구)

  • Kim, Hyun-Su;Kang, Joo-Won
    • Journal of Korean Society of Steel Construction
    • /
    • v.24 no.3
    • /
    • pp.325-336
    • /
    • 2012
  • Smart base isolation systems developed for structures in high seismic regions cannot be directly applied to structures in regions of low-to-moderate seismicity, such as Korea. Therefore, the problems that occur by applying the smart base isolation system for high seismic regions to the structures in regions of low-to-moderate seismicity have been investigated in this study. To this end, a five-story building is used as an example, and an MR damper and low damping elastomeric bearings were used to compose a smart base isolation system. Artificial earthquakes are simulated for ground motions in regions of high and low-to-moderate seismicity. Based on numerical simulation results, the MR damper capacity that can provide good control is quite different among regions of high and low-to-moderate seismicity. Moreover, it is noted that the properties of a smart base isolation system for the regions of low-to-moderate seismicity should be carefully designed because the base isolation effects of the smart base isolation system for high seismic regions deteriorate when it is applied to the structures in regions of low-to-moderate seismicity.

Analysis of Seismic Response According to Installation Location of Seismic Isolation System Applied to High-Rise Building (고층 건물에 적용한 면진 시스템의 설치 위치에 따른 지진 응답 분석)

  • Kim, Min-Ju;Kim, Dong-Uk;Kim, Hyun-Su;Kang, Joo-Won
    • Journal of Korean Association for Spatial Structures
    • /
    • v.18 no.4
    • /
    • pp.81-88
    • /
    • 2018
  • Seismic isolation systems have typically been used in the form of base seams in mid-rise and low-rise buildings. In the case of high-rise buildings, it is difficult to apply the base isolation. In this study, the seismic response was analyzed by changing the installation position of the seismic isolation device in 3D high - rise model. To do this, we used 30-story and 40-story 3D buildings as example structures. Historic earthquakes such as Mexico (1985), Northridge (1994) and Rome Frieta (1989) were applied as earthquake loads. The installation position of the isolation device was changed from floor to floor to floor. The maximum deformation of the seismic isolation system was analyzed and the maximum interlaminar strain and maximum absolute acceleration were analyzed by comparing the LB model with seismic isolation device and the Fixed model, which is the base model without seismic isolation device. If an isolation device is installed on the lower layer, it is most effective in response reduction, but since the structure may become unstable, it is effective to apply it to an effective high-level part. Therefore, engineers must consider both structural efficiency and safety when designing a mid-level isolation system for high-rise buildings.

Experimental Study on Seismic Performance of Base-Isolated Bridge

  • Chung, Woo Jung;Yun, Chung Bang;Kim, Nam Sik;Seo, Ju Won
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.2 no.3
    • /
    • pp.51-60
    • /
    • 1998
  • Base isolation is an innovative design strategy that provides a practical alternative for the seismic design of structures. Base isolators, mainly employed to isolate large structures subjected to earthquake ground excitations and to rehabilitate structures damaged by past earthquakes, deflect and absorb the seismic energy horizontally transmitted to the structures. This study demonstrated that the base isolation system may offer effective performance for bridges during severe seismic events through shaking table tests. Two base isolation systems using laminated rubber bearings with and without hydraulic dampers are tested. The test results strongly show that the laminate rubber bearings cause the natural period of the bridge structure increased considerably, which results in the deck acceleration and the shear forces on the deck acceleratino and the shear forces on the piers reduced significantly. The results also demonstrate that the hydraulic dampers enhance the system's capacity in dissipating energy to reduce the relative displacement between the bridge deck and the pier.

  • PDF

Neuro-Fuzzy Modeling Approach for Hybrid Base Isolaton System (하이브리드 면진장치의 뉴로-퍼지 모형화)

  • Kim Hyun-Su;Roschke P. N.;Lee Dong-Guen
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2005.04a
    • /
    • pp.201-208
    • /
    • 2005
  • Neuro-Fuzzy modeling approach is proposed to predict the dynamic behavior of a single-degree-of-freedom structure that is equipped with hybrid base isolation system. Hybrid base isolation system consists of friction pendulum systems (FPS) and a magnetorheological (MR) damper. Fuzzy model of the M damper is trained by ANFIS using various displacement, velocity, and voltage combinations that are obtained from a series of performance tests. Modelling of the FPS is carried out with a nonlinear analytical equation that is derived in this study and neuro-fuzzy training. Fuzzy logic controller is employed to control the command voltage that is sent to MR damper. The dynamic responses or experimental structure subjected to various earthquake excitations are compared with numerically simulated results using neuro-fuzzy modeling method. Numerical simulation using neuro-fuzzy models of the MR damper and FPS predict response of the hybrid base isolation system very well.

  • PDF

Structure's base design for earthquake protection numerical and experimental study

  • Alsaif, K.;Kaplan, H.
    • Structural Engineering and Mechanics
    • /
    • v.16 no.1
    • /
    • pp.101-114
    • /
    • 2003
  • A base isolation system is proposed for earthquake protection of structures. The system incorporates spherical supports for the base, a specially designed spring-cam system to keep the base rigidly supported under normal condition and to allow it to move for the duration of the earthquake under the constraint of a spring with optimized non-linear characteristics. A single-story model is constructed to investigate the feasibility of the concept. Numerical simulations of the system as well as experimental results show that 95% reduction of the transmitted force to the structure can be achieved. To demonstrate the effectiveness of this isolation mechanism, the maximum dynamic bending stress developed at predetermined critical points within the frame of the structure is measured. Significant reduction of the dynamic stresses is obtained.

Application of Smart Isolation Platform for Microvibration Control of High-Tech Industry Facilities (첨단기술산업 시설물의 미진동제어를 위한 스마트 면진플랫폼의 적용)

  • Kim, Hyun-Su;Kang, Joo-Won;Kim, Young-Sik
    • Journal of Korean Association for Spatial Structures
    • /
    • v.14 no.2
    • /
    • pp.87-94
    • /
    • 2014
  • In this study, a smart isolation platform has been developed for control of microvibration of high-technology facilities, such as semi-conductor plants and TFT-LCD plants. Previously, microvibration control performance of a smart base isolation system has been investigated. This study compared microvibration control performance of a smart isolation platform with that of conventional base isolation and fixed base. For this purpose, train-induced ground acceleration is used for time history analysis. An MR damper was used to compose a smart isolation platform. A fuzzy logic controller was used as a control algorithm and it was optimized by a multi-objective genetic algorithm. Numerical analysis shows that a smart isolation platform can effectively control microvibration of a high-technology facility subjected to train-induced excitation compared with other models.

Retrofitting of vulnerable RC structures by base isolation technique

  • Islam, A.B.M. Saiful;Jumaat, Mohd Zamin;Ahmmad, Rasel;Darain, Kh. Mahfuz ud
    • Earthquakes and Structures
    • /
    • v.9 no.3
    • /
    • pp.603-623
    • /
    • 2015
  • The scale and nature of the recent earthquakes in the world and the related earthquake disaster index coerce the concerned community to become anxious about it. Therefore, it is crucial that seismic lateral load effect will be appropriately considered in structural design. Application of seismic isolation system stands as a consistent alternative against this hazard. The objective of the study is to evaluate the structural and economic feasibility of reinforced concrete (RC) buildings with base isolation located in medium risk seismic region. Linear and nonlinear dynamic analyses as well as linear static analysis under site-specific bi-directional seismic excitation have been carried out for both fixed based (FB) and base isolated (BI) buildings in the present study. The superstructure and base of buildings are modeled in a 3D finite element model by consistent mass approach having six degrees of freedom at each node. The floor slabs are simulated as rigid diaphragms. Lead rubber bearing (LRB) and High damping rubber bearing (HDRB) are used as isolation device. Change of structural behaviors and savings in construction costing are evaluated. The study shows that for low to medium rise buildings, isolators can reduce muscular amount of base shears, base moments and floor accelerations for building at soft to medium stiff soil. Allowable higher horizontal displacement induces structural flexibility. Though incorporating isolator increases the outlay, overall structural cost may be reduced. The application of base isolation system confirms a potential to be used as a viable solution in economic building design.

Response of base-isolated liquid storage tanks to near-fault motions

  • Jadhav, M.B.;Jangid, R.S.
    • Structural Engineering and Mechanics
    • /
    • v.23 no.6
    • /
    • pp.615-634
    • /
    • 2006
  • Seismic response of the liquid storage tanks isolated by the elastomeric bearings and sliding systems is investigated under near-fault earthquake motions. The fault normal and parallel components of near-fault motion are applied in two horizontal directions of the tank. The continuous liquid mass of the tank is modeled as lumped masses known as sloshing mass, impulsive mass and rigid mass. The corresponding stiffness associated with these lumped masses has been worked out depending upon the properties of the tank wall and liquid mass. It is observed that the resultant response of the isolated tank is mainly governed by fault normal component with minor contribution from the fault parallel component. Further, a parametric study is also carried out to study the effects of important system parameters on the effectiveness of seismic isolation for liquid storage tanks. The various important parameters considered are: aspect ratio of tank, the period of isolation and the damping of isolation bearings. There exists an optimum value of isolation damping for which the base shear in the tank attains the minimum value under near-fault motion. The increase of damping beyond the optimum value will reduce the bearing and sloshing displacements but increases the base shear. A comparative performance of five isolation systems for liquid storage tanks is also studied under normal component of near-fault motion and found that the EDF type isolation system may be a better choice for design of isolated tank in near-fault locations. Finally, it is also observed that the satisfactory response can be obtained by analysing the base-isolated tanks under simple cycloidal pulse instead of complete acceleration history.

Application of Performance Based Design Concept using Hybrid-type Base-Isolation System (Hybrid-type 면진장치를 이용한 성능설계 개념의 적용)

  • Chun, Young-Soo;Whang, Ki-Tea;Rim, Jong-Man
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.502-505
    • /
    • 2004
  • Now for the first time in Korea pilot project on application of base isolation system to the RC building is carrying out by collaboration with KNHC and DRB dongil. The hybrid-type base isolation system, which is composed of sliding bearings and laminated rubber bearings and can make the resonance period of base isolated buildings comparatively long up to 4 or 5 seconds, is applied to this building. In this paper the overview of this project, the dynamic characteristics of this particular building and the response reduction effect against earthquakes are presented.

  • PDF

Real-time hybrid simulation of smart base-isolated raised floor systems for high-tech industry

  • Chen, Pei-Ching;Hsu, Shiau-Ching;Zhong, You-Jin;Wang, Shiang-Jung
    • Smart Structures and Systems
    • /
    • v.23 no.1
    • /
    • pp.91-106
    • /
    • 2019
  • Adopting sloped rolling-type isolation devices underneath a raised floor system has been proved as one of the most effective approaches to mitigate seismic responses of the protected equipment installed above. However, pounding against surrounding walls or other obstructions may occur if such a base-isolated raised floor system is subjected to long-period excitation, leading to adverse effects or even more severe damage. In this study, real-time hybrid simulation (RTHS) is adopted to assess the control performance of a smart base-isolated raised floor system as it is an efficient and cost-effective experimental method. It is composed of multiple sloped rolling-type isolation devices, a rigid steel platen, four magnetorheological (MR) dampers, and protected high-tech equipment. One of the MR dampers is physically tested in the laboratory while the remainders are numerically simulated. In order to consider the effect of input excitation characteristics on the isolation performance, the smart base-isolated raised floor system is assumed to be located at the roof of a building and the ground level. Four control algorithms are designed for the MR dampers including passive-on, switching, modified switching, and fuzzy logic control. Six artificial spectrum-compatible input excitations and three slope angles of the isolation devices are considered in the RTHS. Experimental results demonstrate that the incorporation of semi-active control into a base-isolated raised floor system is effective and feasible in practice for high-tech industry.