• Title/Summary/Keyword: barrier films

Search Result 492, Processing Time 0.025 seconds

An ERD-TOF System for the Depth Profiling of Light Elements (경원소 적층 분석을 위한 탄성되튐-비행시간 측정시스템)

  • Kim, Y. S.;Woo, H. J.;Kim, J. K.;Kim, D. K.;Choi, H. W.;Hong, W.
    • Journal of the Korean Vacuum Society
    • /
    • v.5 no.1
    • /
    • pp.25-32
    • /
    • 1996
  • An ERD-TOF system is constructed for the nondestructive depth profiling of light elements in thin films in the range of several thousand angstroms. The particles, recoiled by 10 $MeV^{35}Cl$ projectiles, were detected by a Time-Of-Flight spectrometer composed of a MCP (Micro Channel Plate) and a SSB (Silicon Surface Barrier) detector. A two parameter data acquisition system composed of two PC's was constructed for registering simultaneous time and energy signals. A $Si_3N_4$/poly-Si/$SiO_2$/Si sample was anlayzed and the result is compared with RBS. The detection limit, maximum probable depth and depth resolution for light elements in silicon are about $4\times10^{14}atoms/\textrm{cm}^2$, 5, 000$\AA$ and 100$\AA$, respectively.

  • PDF

Electrical Properties of Porous SiO2/ITO Nano Films (다공성 SiO2/ITO 나노박막의 전기적 특성)

  • Sin, Yong-Uk;Kim, Sang-U
    • Korean Journal of Materials Research
    • /
    • v.12 no.1
    • /
    • pp.94-99
    • /
    • 2002
  • The electrical properties of porous $SiO_2/ITO$ nano thin film were studied by complex impedance and conductive mechanisms were analyzed. According to the results of complex impedance, the activation energy of $SiO_2/ITO$ and $Zn-SiO_2/ITO$ were 0.309 eV, 0.077 eV in below $450^{\circ}C$ and 0.147 eV in over $450^{\circ}C$, respectively. In case of $SiO_2/ ITO$, slightly direct tunneling occurred at room temperature. The contribution for conduction was very tiny because of high barrier of silica. However, the conductivity abruptly increased in over $300^{\circ}C$ by Thermally assisted tunneling. In case of $Zn-SiO_2/ITO$, high conductivity in 1.26 ${\Omega}^{ -1}{cdot}cm^{-1}$ at room temperature appeared by space charge conduction or Frenkel-poole emission that Zn ions play a role as localized electron states.

Tunneling Magnetoresistance in Si/$SiO_2$/NiFe/$Al_2$$O_3$/Co Thin Films (Si/$SiO_2$/NiFe/$Al_2$$O_3$/Co 박막의 투과자기저항 특성 연구)

  • 현준원;백주열
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.14 no.11
    • /
    • pp.934-940
    • /
    • 2001
  • Magnetic properties were investigated for Si/SiO$_2$/NiFe(300 )/A1$_2$O$_3$(t)/Co(200 ) junction related with the parameters of $Al_2$O$_3$. Insulating $Al_2$O$_3$ layer was formed by depositing a 5~40 thick Al layer, followed by a 90~120s RF plasma oxidation in an $O_2$ atmosphere. Magnetoresistance was not observed for tunnel junction with 5~10 thick Al layer, but magnetoresistance was observed large for tunnel junction with 15~40 thick Al layer. Oxidation time did not largely influence magnetoresistance. Tunnel magnetoresistance effect depended on magnetization behavior of two ferromagnetic layers. Tunneling junction was confirmed through nonlinear I-V curve. In this work, tunneling magnetoresistance(TMR) up to 30 % was observed. This apparent TMR is an artifact of the nonuniform current flow over the junction in the cross geometry of the electrodes.

  • PDF

Tunneling magnetoresistance in ferromagnetic tunnel junctions with conditions of insulating barrier preparation (부도체층 제작조건에 따른 강자성 터널접합의 투과자기저항 특성 연구)

  • 백주열;현준원
    • Journal of the Korean institute of surface engineering
    • /
    • v.32 no.1
    • /
    • pp.61-66
    • /
    • 1999
  • The Spin-dependent tunneling magnetoresistance (TMR) effect was observed in $NiFe/Al_2O_3$/Co thin films. The samples were prepared by magnetron sputtering in a system with a base pressure of $3\times10^{-6}$Torr. the insulating $Al_2O_3$layer was prepared by r.f. plasma oxydation method of a metallic Al layer. The ferromagnetic and insulating layers were deposited through metallic masks to produce the cross pattern form. The junction has an active area of $0.3\times0.3\textrm{mm}^2$ and the $Al_2O_3$layer is deposited through a circular mask with a diameter of 1mm. It is very important that insulating layer is formed very thinly and uniformly in tunneling junction. The ferromagnetic layer was fabricated in optimum conditions and the surface of that was very flat, which was observed by AFM. Tunneling junction was confirmed through nonlinear I-V curve. $NiFe/Al_2O_3$/Co junction was observed for magnetization behavior and magnetoresistance property and magnetoresistance property is dependent on magnetization behavior and magnetoresistance property and magnetoresistance property is dependent on magnetization behavior of t재 ferromagnetic layer. The maximum magnetoresistance ratio was about 6.5%.

  • PDF

Measurement and Verification of Thermal Conductivity of Multilayer Thin Dielectric Film via Differential $3\omega$ Method (차등 $3\omega$ 기법을 이용한 다층 유전체 박막의 열전도도 측정 및 검증)

  • Shin, Sang-Woo;Cho, Han-Na;Cho, Hyung-Hee
    • Transactions of the Society of Information Storage Systems
    • /
    • v.2 no.1
    • /
    • pp.85-90
    • /
    • 2006
  • In this study, measurement of thermal conductivity of multilayer thin dielectric film has been conducted via differential $3\omega$ method. Also, verification of differential $3\omega$ method has been accomplished with various proposed criteria. The target film for the measurement is 300 nm thick silicon dioxide which is covered with upper protective layer of various thicknesses. The upper protective layer is inserted between the target film and the heater line for purpose of electrical insulator or anti-oxidation barrier since the target film may be a good electrical conductor or a well-oxidizing material. Since the verification of differential $3\omega$ method has not been conducted yet, we have shown that the measurement of thermal conductivity of thin films with upper protective layer via differential $3\omega$ method is verified to be reliable as long as the proposed preconditions of the samples are satisfied. Experimental results show that the experimental errors tend to increase with aspect ratio between thickness of the upper protective layer and width of the heater line due to heat spreading effect.

  • PDF

Enhanced Corrosion Protection Performance by Novel Inhibitor-Loaded Hybrid Sol-Gel Coatings on Mild Steel in 3.5% NaCl Medium

  • Suleiman, Rami K.
    • Corrosion Science and Technology
    • /
    • v.18 no.5
    • /
    • pp.168-174
    • /
    • 2019
  • The sol-gel methodology has been applied successfully in the synthesis of a novel hybrid coating based on dimethoxymethyl-n-octadecylsilane precursor. The newly synthesized parent coating was functionalized further with two commercially-available corrosion-inhibitive pigments Moly-$white^{(R)}$ 101-ED and Hfucophos $Zapp^{(R)}$, applied to mild steel panels, and immersed continuously in 3.5% NaCl electrolytic solution for 288 h. The corrosion protection performance of the prepared functional coatings was evaluated using electrochemical impedance spectroscopy (EIS) and DC polarization techniques. An enhancement in the barrier properties has been revealed from the electrochemical characterization data of the hybrid films, in comparison with untreated mild steel substrates following long-term immersion in 3.5% NaCl. The corrosion resistance properties of the newly developed coatings over mild steel substrates found to be largely dependent on the type of the loaded inhibitive pigment in which the Moly-white inhibitor has a positive impact on the corrosion protection performance of the parent coating, while an opposite behavior was observed upon mixing the base polymeric matrix with the commercially-available Zapp corrosion inhibitor.

Performance Improvement of Flexible Thin Film Si Solar Cells using Graphite Substrate (그라파이트 기판을 이용한 유연 박막 실리콘 태양전지 특성 향상)

  • Lim, Gyeong-yeol;Cho, Jun-sik;Chang, Hyo Sik
    • Korean Journal of Materials Research
    • /
    • v.29 no.5
    • /
    • pp.317-321
    • /
    • 2019
  • We investigated the characteristics of nano crystalline silicon(nc-Si) thin-film solar cells on graphite substrates. Amorphous silicon(a-Si) thin-film solar cells on graphite plates show low conversion efficiency due to high surface roughness, and many recombination by dangling bonds. In previous studies, we deposited barrier films by plasma enhanced chemical vapor deposition(PECVD) on graphite plate to reduce surface roughness and achieved ~7.8 % cell efficiency. In this study, we fabricated nc-Si thin film solar cell on graphite in order to increase the efficiency of solar cells. We achieved 8.45 % efficiency on graphite plate and applied this to nc-Si on graphite sheet for flexible solar cell applications. The characterization of the cell is performed with external quantum efficiency(EQE) and current density-voltage measurements(J-V). As a result, we obtain ~8.42 % cell efficiency in a flexible solar cell fabricated on a graphite sheet, which performance is similar to that of cells fabricated on graphite plates.

HTS Josephson Junctions with Deionized Water Treated Interface (증류수 계면처리를 이용한 고온초전도체 죠셉슨 접합 제작)

  • Moon, S.H.;Park, W.K.;Kye, J.I.;Park, J.D.;Oh, B.
    • Progress in Superconductivity
    • /
    • v.2 no.2
    • /
    • pp.76-80
    • /
    • 2001
  • We have fabricated YBa$_2$Cu$_3$$O_{7-x}$ (YBCO) ramp-edge Josephson junctions by modifying ramp edges of the base electrodes without depositing any artificial barrier layer. YBa$_2$Cu$_3$O/7-x//SrTiO$_3$ (YBCO/STO) films were deposited on SrTiO$_3$(100) by on-axis KrF laser deposition. After patterning the bottom YBCO/STO layer, the ramp edge was cleaned by ion-beam and then reacted with deionized water under various conditions prior to the deposition of counter-electrode layers. The top YBCO/STO layer was deposited and patterned by photolithography and ion milling. We measured current-voltage (I-V) characteristics, magnetic field modulation of the critical current at 77 K. Some showed resistively shunted junction (RSJ)-type I-V characteristics, while others exhibited flux-flow behaviors, depending on the dipping time of the ramp edge in deionized water. Junctions fabricated using optimized conditions showed fairly uniform distribution of junction parameters such as I$_{c}$R$_{n}$ values, which were about 0.16 mV at 77 K with 1$\sigma$~ 24%. We made a dc SQUID with the same deionized water treated junctions, and it showed the sinusoidal modulation under applied magnetic field at 77 K. 77 K.

  • PDF

Warpage of Flexible OLED under High Temperature Reliability Test (고온 신뢰성 시험에서 발생된 플렉서블 OLED의 휨 변형)

  • Lee, Mi-Kyoung;Suh, Il-Woong;Jung, Hoon-Sun;Lee, Jung-Hoon;Choa, Sung-Hoon
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.23 no.1
    • /
    • pp.17-22
    • /
    • 2016
  • Flexible organic light-emitting diode (OLED) devices consist of multi-stacked thin films or layers comprising organic and inorganic materials. Due to thermal coefficient mismatch of the multi-layer films, warpage of the flexible OLED is generated during high temperature process of each layer. This warpage will create the critical issues for next production process, consequently lowering the production yield and reliability of the flexible OLED. In this study, we investigate the warpage behavior of the flexible OLED for each bonding process step of the multi-layer films using the experimental and numerical analysis. It is found that the polarizer film and barrier film show significant impact on warpage of flexible OLED, while the impact of the OCA film on warpage is negligible. The material that has the most dominant impact on the warpage is a plastic cover. In order to minimize the warpage of the flexible OLED, we estimate the optimal material properties of the plastic cover using design of experiment. It is found that the warpage of the flexible OLED is reduced to less than 1 mm using a cover plastic of optimized properties which are the elastic modulus of 4.2 GPa and thermal expansion coefficient of $20ppm/^{\circ}C$.

The Low-field Tunnel-type Magnetoresistance Characteristics of Thin Films Deposited on Different Substrate (기판 효과에 따른 저 자장 영역에서의 자기저항 효과에 관한 연구)

  • Lee, Hi-Min;Shim, In-Bo;Kim, Chul-Sung
    • Journal of the Korean Magnetics Society
    • /
    • v.12 no.2
    • /
    • pp.41-45
    • /
    • 2002
  • The low-field tunnel-type magnetoresistance (MR) properties of sol-gel derived $La_{0.7}Pb_{0.3}MnO_3(LPMO)$ thin film deposited on different substrate have been investigated. Polycrystalline thin films were fabricated by spin-coating on $SiO_2/Si(100)$ substrate and that with yttria-stabilized zirconia (YSZ) buffer layer, while c-axis-oriented thim film was grown on $LaAlO_3(001)$ (LAO) single crystal substrate. The full width half maximum (FWHM) of the rocking curve scan of LPMO/LAO film is $0.32^{\circ}$. Tunnel-type MR ratio is 0.52 % in $LPMO/SiO_2/Si$(100) film and that of $LPMO/YSZ/SiO_2/Si$(100) film is as high as 0.68 %, whereas that of LPMO/LAO(001) film is less than 0.4 % under the applied field of 500 Oe at 300 K. Well-pronounced MR hysteresis was registered with an MR peak in the vicinity of the coercive field. The low-field tunnel-type MR characteristics of thin films deposited on different substrates originates from the behavior of grain boundary properties.