• 제목/요약/키워드: band energy

검색결과 1,830건 처리시간 0.035초

질화물계 반도체 GaP1-X NX의 에너지 밴드갭 계산 (The Calculation of the Energy Band Gaps of Zincblende GaP1-X NX)

  • 정호용;김대익
    • 한국전자통신학회논문지
    • /
    • 제12권5호
    • /
    • pp.783-790
    • /
    • 2017
  • 본 연구에서는 무질서 효과가 고려된, 새로이 가정한 가상 결정 근사법을 갖는 empirical pseudopotential method를 사용하여 온도와 조성비 변화에 따른 3원계 질화물계 화합물 반도체 GaP1-xNx의 휨 매개변수 및 에너지 밴드갭을 계산하였다. 300K의 조성비 구간($0{\leq}x{\leq}0.05$)에서 에너지 밴드갭들이 급격히 감소하며, 해당하는 계산된 휨 매개변수가 13.1eV임을 알 수 있었다. 에너지 밴드갭 계산 결과로부터 굴절률 n과 실수부 유전상수 함수 ${\varepsilon}$를 계산하였고, 에너지 밴드갭 계산 결과는 실험치를 대체로 잘 설명하였다.

온도 및 조성비 변화에 따른 질화물계 화합물 반도체 GaAs1-X NX의 에너지 밴드갭과 광학상수 계산 (The Calculation of the Energy Band Gaps and Optical constants of Zincblende GaAs1-X NX on Temperature and Composition)

  • 정호용;김대익
    • 한국전자통신학회논문지
    • /
    • 제13권6호
    • /
    • pp.1213-1222
    • /
    • 2018
  • 본 연구에서는 무질서 효과가 고려된, 새로이 가정한 가상 결정 근사법을 갖는 empirical pseudopotential method를 사용하여 온도와 조성비 변화에 따른 3원계 질화물계 화합물 반도체 $GaAs_{1-X}N_X$의 휨 매개변수 및 에너지 밴드갭을 계산하였다. 300K의 조성비 구간($0{\leq}x{\leq}0.05$)에서 에너지 밴드갭들이 급격히 감소하며, 해당하는 계산된 휨 매개변수가 15eV임을 알 수 있었다. 에너지 밴드갭 계산 결과로부터 굴절률 n과 고주파 유전상수 ${\varepsilon}$ 등의 광학상수를 계산하였고, 에너지 밴드갭 계산 결과는 실험치를 대체로 잘 설명하였다.

ASA 프로그램을 이용한 박막태양전지 구조설계 최적화

  • 백승신;최형욱;이영석;이준신
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2009년도 추계학술대회 논문집
    • /
    • pp.37-37
    • /
    • 2009
  • 박막태양전지는 p-i-n substrate형과 n-i-p substrate형 두가지구조로 제조된다. 각 layer에서 activation energy와 band gap energy를 ASA simulator를 통해 조절해보았다. Simulation결과 p-i-n substrate형에서 p-layer와 n-i-p substrate형 n-layer에서 동일하게 activation energy 0.2eV, band gap energy 1.80eV에 최고효율 나왔고 각각 10.07%, 10.17%의 최고효율을 구할 수 있었다. 최적화 과정을 통하여 같은 조건에서 p-i-n substrate형 보다 n-i-p substrate형이 보다 높은 효율을 낸다는 것을 알 수 있었으며 본 연구를 통해 각 구조의 차이를 알 수 있었고 이는 높은 효율의 박막태양전지 설계에 도움이 될 것 이다.

  • PDF

액상 광촉매 졸의 밴드갭 에너지 측정 연구 (A study on the Band Gap Energy Measurement of Liquid Phase Photocatalytic Sols)

  • 윤초롱;;오효진;황종선;김선재
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2006년도 추계학술대회 논문집 광주전남지부
    • /
    • pp.39-42
    • /
    • 2006
  • Titania sols or powders were are very promising materials for environment as photocatalyst. The band gap energy of $TiO_2$ has been known to be 2.8 to 3.2 eV. But the measuring system of its band gap is usually depend on absorption properties. Thus, in this study, absorption properties of $TiO_2$ sols prepared by hydrothermal process were researched with the effect of various particle sizes and concentrations. The mean particle size in $TiO_2$ sols increased as 15 nm to 60 nm, absorption graph measured by UV-Vis spectrometer shows to move red-shift. When dilute solution added with $2^n$ in $TiO_2$, the band gap energy increases as linear function.

  • PDF

Band Alignment at CdS/wide-band-gap Cu(In,Ga)Se2 Hetero-junction by using PES/IPES

  • Kong, Sok-Hyun;Kima, Kyung-Hwan
    • Transactions on Electrical and Electronic Materials
    • /
    • 제6권5호
    • /
    • pp.229-232
    • /
    • 2005
  • Direct characterization of band alignment at chemical bath deposition $(CBD)-CdS/Cu_{0.93}(In_{1-x}Ga_x)Se_2$ has been carried out by photoemission spectroscopy (PES) and inverse photoemission spectroscopy (IPES). Ar ion beam etching at the condition of the low ion kinetic energy of 400 eV yields a removal of surface contamination as well as successful development of intrinsic feature of each layer and the interfaces. Especially interior regions of the wide gap CIGS layers with a band gap of $1.4\~1.6\;eV$ were successfully exposed. IPES spectra revealed that conduction band offset (CBO) at the interface region over the wide gap CIGS of x = 0.60 and 0.75 was negative, where the conduction band minimum of CdS was lower than that of CIGS. It was also observed that an energy spacing between conduction band minimum (CBM) of CdS layer and valance band maximum (VBM) of $Cu_{0.93}(In_{0.25}Ga_{0.75})Se_2$ layer at interface region was no wider than that of the interface over the $Cu_{0.93}(In_{0.60}Ga_{0.40})Se_2$ layer.

ESTIMATION OF SOIL MOISTURE WITH AIRBORNE L-BAND MICROWAVE RADIOMETER

  • Chang, Tzu-Yin;Liou, Yuei-An
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2008년도 International Symposium on Remote Sensing
    • /
    • pp.26-28
    • /
    • 2008
  • Soil moisture plays an important role in the land-atmosphere energy balance because it governs the partitioning of energy through latent heat fluxes or evapotranspiration. From the numerous studies, it is evident that the L-band radiometer is a useful and effective tool to measure soil moisture. The objective of the study is to develop and to verify the soil moisture retrieval algorithms for the L-band radiometer system. Through the radiometer-observed brightness temperature, surface emissivity and reflectivity can be derived, and, hence, soil moisture. We collect field and L-band airborne radiometer data from washita92, SGP97 and SGP99 experiments to assist the development of the retrieval algorithms. Upon launching the satellite L-band radiometer such as ESA-sponsored SMOS (Soil Moisture and Ocean Salinity) mission, the developed algorithms may be used to study and monitor globe soil moisture change.

  • PDF

The effect of strain on the electronic properties of MoS2 monolayers

  • Park, Soon-Dong;Kim, Sung Youb
    • Coupled systems mechanics
    • /
    • 제5권4호
    • /
    • pp.305-314
    • /
    • 2016
  • We utilize first-principles calculations within density-functional theory to investigate the possibility of strain engineering in the tuning of the band structure of two-dimensional $MoS_2$. We find that the band structure of $MoS_2$ monolayers transits from direct to indirect when mechanical strain is applied. In addition, we discuss the change in the band gap energy and the critical stains for the direct-to-indirect transition under various strains such as uniaxial, biaxial, and pure shear. Biaxial strain causes a larger change, and the pure shear stain causes a small change in the electronic band structure of the $MoS_2$ monolayer. We observe that the change in the interaction between molecular orbitals due to the mechanical strain alters the band gap type and energy.

Energy Efficient Sequential Sensing in Multi-User Cognitive Ad Hoc Networks: A Consideration of an ADC Device

  • Gan, Xiaoying;Xu, Miao;Li, He
    • Journal of Communications and Networks
    • /
    • 제14권2호
    • /
    • pp.188-194
    • /
    • 2012
  • Cognitive networks (CNs) are capable of enabling dynamic spectrum allocation, and thus constitute a promising technology for future wireless communication. Whereas, the implementation of CN will lead to the requirement of an increased energy-arrival rate, which is a significant parameter in energy harvesting design of a cognitive user (CU) device. A well-designed spectrum-sensing scheme will lower the energy-arrival rate that is required and enable CNs to self-sustain, which will also help alleviate global warming. In this paper, spectrum sensing in a multi-user cognitive ad hoc network with a wide-band spectrum is considered. Based on the prospective spectrum sensing, we classify CN operation into two modes: Distributed and centralized. In a distributed network, each CU conducts spectrum sensing for its own data transmission, while in a centralized network, there is only one cognitive cluster header which performs spectrum sensing and broadcasts its sensing results to other CUs. Thus, a wide-band spectrum that is divided into multiple sub-channels can be sensed simultaneously in a distributed manner or sequentially in a centralized manner. We consider the energy consumption for spectrum sensing only of an analog-to-digital convertor (ADC). By formulating energy consumption for spectrum sensing in terms of the sub-channel sampling rate and whole-band sensing time, the sampling rate and whole-band sensing time that are optimal for minimizing the total energy consumption within sensing reliability constraints are obtained. A power dissipation model of an ADC, which plays an important role in formulating the energy efficiency problem, is presented. Using AD9051 as an ADC example, our numerical results show that the optimal sensing parameters will achieve a reduction in the energy-arrival rate of up to 97.7% and 50% in a distributed and a centralized network, respectively, when comparing the optimal and worst-case energy consumption for given system settings.

Energy Band Structure, Electronic and Optical properties of Transparent Conducting Nickel Oxide Thin Films on $SiO_2$/Si substrate

  • Denny, Yus Rama;Lee, Sang-Su;Lee, Kang-Il;Lee, Sun-Young;Kang, Hee-Jae;Heo, Sung;Chung, Jae-Gwan;Lee, Jae-Cheol
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제42회 동계 정기 학술대회 초록집
    • /
    • pp.347-347
    • /
    • 2012
  • Nickel Oxide (NiO) is a transition metal oxide of the rock salt structure that has a wide band gap of 3.5 eV. It has a variety of specialized applications due to its excellent chemical stability, optical, electrical and magnetic properties. In this study, we concentrated on the application of NiO thin film for transparent conducting oxide. The energy band structure, electronic and optical properties of Nickel Oxide (NiO) thin films grown on Si by using electron beam evaporation were investigated by X-Ray Photoelectron Spectroscopy (XPS), Reflection Electron Energy Loss Spectroscopy (REELS), and UV-Spectrometer. The band gap of NiO thin films determined by REELS spectra was 3.53 eV for the primary energies of 1.5 keV. The valence-band offset (VBO) of NiO thin films investigated by XPS was 3.88 eV and the conduction-band offset (CBO) was 1.59 eV. The UV-spectra analysis showed that the optical transmittance of the NiO thin film was 84% in the visible light region within an error of ${\pm}1%$ and the optical band gap for indirect band gap was 3.53 eV which is well agreement with estimated by REELS. The dielectric function was determined using the REELS spectra in conjunction with the Quantitative Analysis of Electron Energy Loss Spectra (QUEELS)-${\varepsilon}({\kappa},{\omega})$-REELS software. The Energy Loss Function (ELF) appeared at 4.8, 8.2, 22.5, 38.6, and 67.0 eV. The results are in good agreement with the previous study [1]. The transmission coefficient of NiO thin films calculated by QUEELS-REELS was 85% in the visible region, we confirmed that the optical transmittance values obtained with UV-Spectrometer is the same as that of estimated from QUEELS-${\varepsilon}({\kappa},{\omega})$-REELS within uncertainty. The inelastic mean free path (IMFP) estimated from QUEELS-${\varepsilon}({\kappa},{\omega})$-REELS is consistent with the IMFP values determined by the Tanuma-Powell Penn (TPP2M) formula [2]. Our results showed that the IMFP of NiO thin films was increased with increasing primary energies. The quantitative analysis of REELS provides us with a straightforward way to determine the electronic and optical properties of transparent thin film materials.

  • PDF

Full 밴드 몬테칼로 시뮬레이션을 이용한 GaAs 임팩트이온화에 관한 연구 (Impact ionization for GaAs using full band monte carlo simulation)

  • 정학기
    • 전자공학회논문지A
    • /
    • 제33A권11호
    • /
    • pp.112-119
    • /
    • 1996
  • Impact ionization model in GaAs has been presented by modified keldysh formula with two sets of power exponent of 7.8 and 5.6 in study. Impact ionization rate is derived from fermil's golden rule and ful lenergy band stucture based on empirical pseudopotential method. Impact ionization rates show anisotropic property in low energy region (<3eV), but isotropic in high energy region (3>eV). Full band monte calo simulator is coded for investigating the validity of the GaAs impact ionization model, and validity is checked by comparing impact ionization coefficients with experimental values and ones in anisotropic model. Valley transitions to energy alteration are explained by investigating electron motion in brillouin zone for full band model to electric field variation.

  • PDF