• Title/Summary/Keyword: bamboo fibers

Search Result 41, Processing Time 0.021 seconds

Fried pork loin batter quality with the addition of various dietary fibers

  • Park, Sin-Young;Kim, Hack-Youn
    • Journal of Animal Science and Technology
    • /
    • v.63 no.1
    • /
    • pp.137-148
    • /
    • 2021
  • The effect of the addition of dietary fiber extracted from wheat, bamboo, and oat on the quality of fried pork loin batter was investigated. Quality evaluation included proximate composition, pH, color, viscosity, coating and frying yield, electronic nose, and sensory evaluation. Regarding proximate composition of fried batter and fried pork loin, the water content of the dietary fiber treatments was significantly higher than that of the control (p < 0.05), whereas fat content was significantly lower than that of the control (p < 0.05). The lightness of non-fried batter with dietary fiber treatments was significantly higher than that of the control (p < 0.05), whereas the yellowness was significantly lower than that of the control (p < 0.05). The lightness, redness, and yellowness of fried pork loin with dietary fiber treatment were significantly lower than those of the control (p < 0.05). The viscosity and coating and frying yield of dietary fiber treatments were significantly higher than those of the control (p < 0.05). The volatile compounds of dietary fiber treatments were decreased "tallowy" flavor and increased "buttery" and "milky" flavor. The principal components of bamboo and oat fiber treatments were clearly distinguishable from those of the control; however, similar principal components as those of the control were obtained with wheat fiber treatment. Regarding sensory evaluation, the color, texture, and overall acceptability of wheat and oat fiber treatments were significantly higher than those of the control (p < 0.05), and the flavor of the wheat fiber treatment was significantly higher than that of the control (p < 0.05). These results show that wheat and oat fibers are suitable for fried pork loin batter and improve its quality.

2009 Historical Consideration of Hanji Used as Art Materials

  • Lee, Ji-Young;Kim, Chul-Hwan;Lee, Young-Rok;Baek, Gyeong-Gil;Lee, Hee-Jin;Gwak, Hye-Jung;Kim, Sung-Ho;Gang, Ha-Ryun
    • Journal of the Korea Furniture Society
    • /
    • v.20 no.3
    • /
    • pp.191-197
    • /
    • 2009
  • Traditional Korean paper called Hanji using bast fibers from mulberry tree is made through complicated handmade works. This made Hanji very strong and exceedingly durable. Therefore it is said to last a thousand years. Such incomparable features of Hanji come from the unique sheet forming method called ouibalttugi using a bamboo screen. Excellent physical properties of Hanji reflect the wide variety of use, all central to everyday life. Despite its Excellency, the papermaking practice of traditional handmade paper, Hanji, from Korea is little known outside its country. This might be due to public apathy on Hanji in modern times. Without future apprentices dedicated to the craft, the Korean tradition able to make its soul is in danger of extinction in its homeland. Therefore more concern and more affection on Hanji is required immediately. It must be kept in mind that Hanji is our cultural heritage in pride over time.

  • PDF

Carbon Material from Natural Sources as an Anode in Lithium Secondary Battery

  • Bhardwaj, Sunil;Sharon, Maheshwar;Ishihara, T.;Jayabhaye, Sandesh;Afre, Rakesh;Soga, T.;Sharon, Madhuri
    • Carbon letters
    • /
    • v.8 no.4
    • /
    • pp.285-291
    • /
    • 2007
  • Carbon materials of various morphologies were synthesized by pyrolysis of Soap-nut seeds (Sapindus mukorossi), Jack Fruit seeds (Artocarpus heterophyllus), Date-seeds (Phoenix dactylifera), Neem seeds (Azadirachta indica), Tea leaves (Ehretia microphylla), Bamboo stem (Bambusa bambus) and Coconut fiber (Cocos nucifera), without using any catalyst. Carbon materials thus formed were characterized by SEM XRD and Raman. Carbon thus synthesized varied in size (in ${\mu}m$) but all showed highly porous morphology. These carbon materials were utilized as the anode in Lithium secondary battery. Amongst the various precursors, carbon fibers obtained from Soap-nut seeds (Sapindus mukorossi) and Bamboo stem (Bambusa bambus), even after $100^{th}$ cycles, showed the highest capacity of 130.29 mAh/g and 92.74 mAh/g respectively. Morphology, surface areas and porosity of carbon materials obtained from these precursors were analyzed to provide interpretation for their capacity to intercalate lithium. From the Raman studies it is concluded that graphitic nature of carbon materials assist in the intercalation of lithium. Size of cavity (or pore size of channels type structure) present in carbon materials were found to facilitate the intercalation of lithium.

Development of Supercapacitors Using Porous Carbon Materials Synthesized from Plant Derived Precursors

  • Khairnar, Vilas;Jaybhaye, Sandesh;Hu, Chi-Chang;Afre, Rakesh;Soga, Tetsu;Sharon, Madhuri;Sharon, Maheshwar
    • Carbon letters
    • /
    • v.9 no.3
    • /
    • pp.188-194
    • /
    • 2008
  • Porous carbon materials synthesized from various plant derived precursors i.e. seeds of [Castor (Ricinus communis), Soap nut (Sapindus sp.), Cashew-nut (Semecarpus anacardium), Jack fruit (Artocarpus heterophyllus), Safflower (Carthamus tinctorius), Ambadi (Crotolaria juncea), Neem (Azadirachta indica), Bitter Almond (Prunus amygdalus), Sesamum (Sisamum indicum), Date-palm (Phoenix dactylifera),Canola (Brassica napus), Sunflower (Helianthus annulus)] and fibrous materials from [Corn stem- (Zea mays), Rice straw (Oryza sativa), Bamboo (Bombax bambusa) and Coconut fibers (Cocos nucifera)] were screened to make supercapacitor in 5M KOH solution. Carbon material obtained from Jack fruit seeds (92.0 F/g), Rice straw (83.0 F/g), Soap nut seeds (54.0 F/g), Castor seeds (44.34 F/g) and Bamboo (40.0 F/g) gave high capacitance value as compared to others. The magnitude of capacitance value was found to be inversely proportional to the scan rate of measurement. It is suggested that carbon material should possess large surface area and small pore size to get better value of capacitor. Moreover, the structure of carbon materials should be such that majority of pores are in the plane parallel to the plane of electrode and surface is fluffy like cotton ball.

Evaluation of Characteristics of Sasa quelpaertensis Nakai Stem for the Comprehensive Utilization (조릿대의 종합적 활용을 위한 조릿대 섬유 특성 평가)

  • Sung, Yong Joo;Kim, Dong Sung;Lee, Ji-Young
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.44 no.5
    • /
    • pp.1-7
    • /
    • 2012
  • Chemical composition, morphological properties and papermaking properties of Sasa quelpaertensis Nakai were investigated in order to use it comprehensively. The lignin contents of stalks and leaves were 18.8% and 15.3% and the holocellulose contents were 63.3% and 48.6% respectively. The contents of ash and the amount of water extract showed the higher value than those of wood or other bamboo species. The average fibers length and width of Sasa quelpaertensis Nakai were 780 ${\mu}m$ and 14.8 ${\mu}m$. The fibers of Sasa quelpaertensis Nakai stalk had thinner width and more slender structure than those of softwood. The handsheet made of Sasa quelpaertensis Nakai alkaline pulp showed higher in tensile strength and bulkier structure than those of handsheet made of soft wood unbleached kraft pulp.

Subjective Sensation and Tactile Preference of Face Towel Fabrics by Pile Fiber Type and Laundering Time (세면용 타월의 파일섬유 종류와 세탁에 따른 주관적 감각과 촉감 선호도)

  • Na, Younhee;Seo, Sangwon;Choi, Jongmyoung
    • Science of Emotion and Sensibility
    • /
    • v.21 no.2
    • /
    • pp.89-100
    • /
    • 2018
  • This study was performed to develop face towel fabrics that reflect consumer's tactile preferences. Three different kinds of pile fiber (100% cotton, 50% cotton/50% bamboo, 100% bamboo) of the towel fabrics were selected for the test. The towels were laundered one, five and 10 times repeatedly in a normal washing condition, and fabric softeners were applied to the towels that were laundered 10 times. The flexibility and absorbency (absorption rate and water absorptivity) were evaluated by laundering times of the face towels. Male and female university students evaluated their subjective sensations of the face towels. The flexibility of towel fabrics showed no significant difference according to type of pile fiber or laundering time. The absorbency of the towels was significantly different according to the type of pile fiber and laundering time. The absorption rate was higher in 100% bamboo fiber, and water absorptivity was higher for cotton fibers. There were no significant differences in subjective sensation according to the type of pile fiber of towels before laundering. As the frequency of laundering increased, the tactile preference for the towel slightly decreased. The 100% bamboo towel was rated the most comfortable among the three kinds of towels. The tactile preference for the towels was influenced by smoothness, fabric softness, and softener treatment, in that order.

Structure and Electron Emission Properties of CN Nanostructures Obtained by HIP Apparatus (HIP에 의해 합성된 CN nanostructures의 구조 및 전계방출 특성)

  • 오정근;이양두;문승일;양석현;이윤희;김남수;주병권
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.8
    • /
    • pp.723-730
    • /
    • 2003
  • The CN(carbon nitrogen) nanofibers were formed by HIP(high isostatic pressure) process. From the field emission measurement, CN nanofibers shows an excellent characteristics of emitter, better than CNTs and carbon nanofibers. The structures obtained can be divided into three groups : bamboo-like fibers, corrugated structures and bead necklace-like fib res. Emission properties of CN nanofibers were investigated for spacing, between anode and cathode, variation. Turn-on fields was 1.4 v/$\mu\textrm{m}$. The time reliability and light emission test were carried out for about 100 hours. We suggest that CN nanofibers can be possibly applied to the high brightness flat lamp because of low turn-on field and time reliability

Water Vapor and Thermal Transmission Properties of Hybrid Yarns Fabrics for High Emotional Garments -Water Vapor and Heat Transport according to Experimental-Method- (고감성 의류용 복합사 직물의 수분증기 및 열이동 특성 -실험방법에 따른 수분증기 및 열이동-)

  • Kim, SeungJin;Kim, Hyunah
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.41 no.1
    • /
    • pp.84-97
    • /
    • 2017
  • Water vapor and thermal transmission properties of high emotional garments are important to evaluate wear comfort; in addition, the measuring methods of these properties are also critical for breathable and warm suit fabrics. In this study, the water vapor and thermal properties of composite yarn fabrics made of CoolMax, Tencel, and Bamboo fibers with filaments were measured and compared according to the measuring method. Water Vapor Transmittance (WVT) of the fabric woven by the sheath/core composite yarn in the warp direction was the highest due to the small staple fiber volume in the sheath/core yarn structure and high air voids in the sheath/core yarn fabrics. This property was also the highest in fabrics woven by bamboo staple yarns in the weft direction, and was the lowest on hi-multi filament fabrics. However, water vapor resistance ($R_{ef}$) of these fabrics by KSK ISO 11092 showed the opposite results to the water vapor transmittance method ($CaCl_2$ method); in addition, its correlation coefficient was low. The correlation coefficient between $R_{ef}$ and the drying rate was 0.719; therefore, the measurement mechanism of $R_{ef}$ is analogous to the drying property measurement. The thermal conductivity of the fabrics woven with compact staple yarn showed a high value; however, the hi-multi filament fabric showed low thermal conductivity. Therefore, fiber characteristics affect thermal properties more than yarn structure. The correlation between thermal property and moisture transport was also low. This study showed that: water vapor transmittance was active at the loose yarn structure, dry heat transport was vigorous at the compact yarn structure, and heat transport was affected more by fiber characteristics than yarn structure. In conclusion, sheath/core composite yarns were relevant to the high absorptive cool suit along with siro-fil and CoolMax/Bamboo staple yarns that were relevant to the heat diffusive cool suit.

Assessment of Wicking and Fast Dry Properties According to Moisture Transport Measurement Method of Knit and Woven Fabrics for Garment (의류소재용 직·편물의 수분이동 특성 측정 방법에 따른 흡한속건성 평가)

  • Kim, Hyun-ah;Kim, Seung-jin
    • Science of Emotion and Sensibility
    • /
    • v.20 no.2
    • /
    • pp.117-126
    • /
    • 2017
  • In this study, moisture transport characteristics for the woven and knitted fabrics made of 8 kinds of fiber materials using MMT (moisture management tester) were measured and discussed with the Bireck bt MMT and water evaporating rate (WER) measuring methods, which are vertical moisture transport methods. In addition, the drying property by MMT of the eight kinds of specimens was compared and discussed with the results measured by the vertical drying measurement. MMT experimental result which is horizental moisture transport appeared to be similar to the result of the Bireck method, which is the vertical moisture transport experiment. Absortion time measured from drip method of the fabrics made of the bamboo, linen, and cotton/nylon composite fabrics was short and thus they showed best wicking property, which was attributed to the low contact angle on the fabric surface and high porosity of the fabrics due to the staple yarn structure composed of the hydrophilic staple fibers. In drying property of the fabric specimens by MMT, maximum absorption radius of the dry-zone knit and bamboo woven fabrics were the highest and they showed the best drying property, which was a little different result compared with vertical drying measurement method. Half time of the drying rate in the MMT method was highly correlated with the fabric thickness and saturated moisture absortion rate and their regression coefficients were 0.9 and 0.88, respectively. This means that the knitted and woven fabric design technology for retaining good wicking and drying properties of the fabrics with thin fabric thickness is very important for obtaining high functional wear comfort fabrics. In addition, wicking and drying properties of the fabrics made of different fiber materials and with different yarns and fabric structures showed different results according to the measuring methods.

Comparison of Physical Properties of Hanjis Made by Different Sheet Forming Processes (초지법에 따른 한지의 물성비교)

  • 최태호;조남석;최인호;정택상
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.33 no.4
    • /
    • pp.21-27
    • /
    • 2001
  • Korean traditional paper (Hanji) making technology has adopted two kinds of sheet forming processes, which called "Oebal-choji": and "Ssangbal-choji". The sheet forming process of Oebal-choji is an original method developed in Korea. At first, paper stock is dipped onto the mold and flow away in the forward direction. Then, paper stock is scooped again and rhythmically rocked from side to side, this work is repeated several times. Through this operation the fibers intertwine and paper layers are formed. Ssangbal-choji is almost same as the Nagashizuki, which used in Japan. In this method, paper stock is scooped onto the mold and rhythmically rocked backwards and forwards several times, the water drains slowly through the bamboo screen and then sheet is formed. Tamezuki method is used in Japan and China. This is a method in which the mold is dipped into the paper stock once and left to drain. In the Ssangbal-choji and Nagashizuki methods, the most of excess solution is cast out while in the Tamezuki all of it is allowed to drain through the mold. This study was carried out to investigate the physical properties of the Hanjis that were made by Oebal-choji, Ssangbal-choji, Nagashizuki, and Tamezuki sheet forming processes. The results were follows; Physical properties of the Oebal-choji Hanji were better than those of Ssangbal-choji, Nagashizuki, and Tamezuki. Oebal-choji Hanji made little difference of paper strength between MD and CD, but Ssangbal-chjo and Nagashizuki Hanjis made wide difference. And there are no difference of paper strength between MD and CD on the Tamezuki Hanji. On the confocal laser scanning microscopy (CLSM) observation of the Hanjis, Oebal-choji made well crossed fiber orientation than those of other forming processes.r forming processes.

  • PDF