• Title/Summary/Keyword: baffles

Search Result 185, Processing Time 0.031 seconds

Research of Heat Transfer Characteristics with Baffle Parameters in Shell and Tube Heat Exchanger (쉘-튜브 열교환기에서 배플 인자에 따른 열전달 특성 연구)

  • Oh, Gyu-Nam;Jun, Yong-Du;Lee, Kum-Bae
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.22 no.9
    • /
    • pp.599-604
    • /
    • 2010
  • Because shell and tube heat exchanger is widely used in industry, extensive research work is going on to improve the thermal efficiency and to understand the key design parameters. In this study, the main design parameters of the baffle, depending on the height and number of baffle for heat recovery are being studied. Numerical results are in good agreement with the experimental results with a slight discrepancy of 3%, which is quite resonable. The heat transfer rate and pressure drop increase depending on increasing of number of baffles and baffle height, but increase of the heat transfer rate is limited due to contact area with the tube, flow separation, fluid residual time, turbulence and velocity.

Estimation of Sloshing Natural Periods in Liquid Cargo Tanks (액체 화물창내의 SLOSHING 고유주기 산정에 관한 연구)

  • 신장용;최경식;강신영;김현수
    • Journal of Ocean Engineering and Technology
    • /
    • v.8 no.2
    • /
    • pp.93-104
    • /
    • 1994
  • Recently in the design of super tankers or LNG carriers which transport a large amount of liquid in the cargo holds, the structural damage due to liquid sloshing becomes an important problem. The impact pressure from sloshing is most violent when the liquid motion of a partially filled tank is in resonance with the motion of a ship. In this paper the sloshing natural periods in liquid cargo tanks are estimated for partially filled tanks with various geometries. Especially the sloshing periods of baffled tanks which are often installed to reduce liquid motion and sloshing forces are calculated. A variational method is adopted to analyze the baffled tank of arbitrary filling depth of liquid. In this approach the liquid domain is divided into several subdomains in which the analytic solutions are potential energy are calculated from the velocity potentials in eachsubdomain. By minimizing the Hamilton's functional, the sloshing natural periods are estimated and the results are compared with experimental and numerical results.

  • PDF

Robust technique using magnetohydrodynamics for safety improvement in sodium-cooled fast reactor

  • Lee, Jong Hui;Park, Il Seouk
    • Nuclear Engineering and Technology
    • /
    • v.54 no.2
    • /
    • pp.565-578
    • /
    • 2022
  • Among Generation IV reactors, the sodium-cooled fast reactor (SFR) is attracting attention as a system having great potential for commercial use. Gas entrainment is a thermal-hydraulic issue related to the safety problem of the reactor core in the SFR. Typically, a dipped plate or baffles are installed under the free surface to suppress gas entrainment. However, these approaches can cause gas entrainment in other locations and require many trial-and-error and verifications. In this study, a new strategy using magnetohydrodynamics to suppress gas entrainment in the SFR is proposed. In a counter-flow model, a judgment criterion of gas entrainment occurrence was developed for both water and liquid metal. Moreover, the gas entrainment can be completely suppressed by applying a magnetic field.

A Study on the Hydraulic Characteristics of Culvert Fishway with Offset Baffles and Fish Passage Effect (옵셋배플형 암거식 어도의 수리특성 및 어류이동효과에 관한 연구)

  • Park, Seong-Yong;Choi, Ji-Woong;Yoon, Byung-Man;Kim, Seo-Jun
    • Journal of Korea Water Resources Association
    • /
    • v.41 no.1
    • /
    • pp.75-85
    • /
    • 2008
  • The pale chub (Zacco platypus) is a dominant species that migrates locally and inhabits in rivers in Korea. The fish movement at confluences or hydraulic connections is very important especially for the life of small fish as pale chub. If main stream and off-channel habitats are connected with culverts, they would restrict the fish movement due to the high flow velocities and low depths. In foreign conturies, design flow conditions of fish friendly culvert, including flood flow capacity and fish-passage flow capacity, were assigned. Installation of culvert fishways is one way to improve the fish-passing capacity of culverts. On the contrary, in Korea, the design flow of culvert contains only the flood flow capacity. The effect of the fish passage with offset baffles was tested with the fixed velocity method in an experimental flume. As a result, An occasion velocity 1.2m/s, proportional success of pale chubs pass is maximum 20% improve than without baffle flume for energy dissipate. Offset baffle fishway(baffle height 5cm) provides that resting areas and/or a continuous channel of low velocity water in culverts. Especially, short baffle areas are domain where the pale chubs pass. And, FLOW-3D, a three dimentional numerical model, was used in order to evaluate detailed hydraulic characteristics and application possibility in a culvert fishway design.

Simulation of Various Baffle Types in a Constructed Wetland Sedimentation Tank using CFD (CFD를 이용한 Hybrid 인공습지의 초기침강지 저류판 구조 모의)

  • Noh, Taegyun;Jeon, Jechan;Kim, Lee-Hyung
    • Journal of Wetlands Research
    • /
    • v.18 no.3
    • /
    • pp.324-329
    • /
    • 2016
  • Constructed wetlands are widely applied in urban and rural areas for various purposes such as pollutants reduction, acquisition of eco-spaces and habitats, flooding reduction, acquisition of water resources and environmental education. Since the design of constructed wetlands utilizes ecosystems, special consideration must be given to ecological mechanisms, environmental mechanisms and hydrological mechanisms. To ensure the sustainable functionality of constructed wetlands, it is necessary to achieve stable flow rate and velocity, and remove sediments to ensure sufficient space for detention. To enhance the efficiency of constructed wetland sedimentation basins, this study determined the optimal position for baffle installation, and applied Computational Fluid Dynamics (CFD) to the cross-sectional design of wetlands. CFD analysis revealed that the decrease in flow velocity with baffle installation enhanced the efficiency of sedimentation of particulate matters. Vertical baffles had higher sedimentation efficiency than those with an inclined angle. When vertical baffles were installed in the sedimentation basin of a hybrid constructed wetland to reduce non-point source pollutants in urban areas, the average flow velocity within the basin decreased by 10~30%, while the sedimentation efficiency improved by 1.3~1.5 times. The application of CFD to constructed wetlands is expected to improve the cost efficiency of designing hybrid constructed wetlands with high removal efficiency.

Application of CFD Program for Analyzing the Hydrodynamic Characteristics of Baffled PAC Contactor (격벽식 분말활성탄 접촉조의 흐름해석을 위한 전산유체역학 프로그램의 적용)

  • Ahn, Chang-Jin;Ahn, Sang-Jin
    • Journal of Korea Water Resources Association
    • /
    • v.35 no.2
    • /
    • pp.221-229
    • /
    • 2002
  • For the efficient design of baffled Powdered activated carbon(PAC) contractor, which has been widely used in water treatment plant(WTP) against the algae-related odor problems, a CFD(computational fluid dynamics) program was applied. In order to verify the performance of FLOW-3D program, the previously reported results of tracer tests from a pilot-scale PAC contractor(working volume of 288 liters) were compared to those from FLOW 3D. The results of FLOW-3D simulation were very similar to those from tracer tests conducted with the Pilot-scale PAC contactor. On the other hand, the hydrodynamic characteristics of baffled contractor in the P-WTP were simulated by using FLOW-3D. Simulation results on the distribution of PAC particles showed that there are some stagnant parts in the back side of baffles in which PAC Particles are not present. These stagnant parts might decrease the adsorption capacity of PAC particles. When the baffles were changed to maze-type intra-basin baffling, PAC particles were evenly distributed and the amount of stagnant parts reduced. In conclusion, it is anticipated that FLOW-3D simulation could be a viab1e tool for analyzing the hydrodynamic characteristics of structures used in drinking water treatment plant.

Review of seismic studies of liquid storage tanks

  • Zhao, Ming;Zhou, Junwen
    • Structural Engineering and Mechanics
    • /
    • v.65 no.5
    • /
    • pp.557-572
    • /
    • 2018
  • The academic research works about liquid storage tanks are reviewed for the purpose of providing valuable reference to the engineering practice on their aseismic design. A summary of the performance of tanks during past earthquakes is described in this paper. Next, the seismic response of tanks under unidirectional earthquake is reported, supplemented with the dynamic response under multidirectional motions. Then, researches on the influence of soil-structure interaction are brought out to help modify the seismic design approach of tanks in different areas with variable properties of soils. Afterwards, base isolation systems are reported to demonstrate their effectiveness for the earthquake-resistant design of liquid storage tanks. Further, researches about the liquid-structure interaction are reviewed with description of simplified models and numerical analytical methods, some of which consider the elastic effect of tank walls. Moreover, the liquid sloshing phenomenon on the hydrodynamic behaviors of tanks is presented by various algorithms including grid-based and meshfree method. And then the impact of baffles in changing the dynamic characteristics of the liquid-structure system is raised, which shows the energy dissipation by the vortex motion of liquid. In addition, uplifting effect is given to enhance the understanding on the capacity of unanchored tanks and some assessment of their development. At last, the concluding remarks and the aspects of extended research in the field of liquid storage tanks under seismic loads are provided, emphasizing the thermal stress analysis, the replaceable system for base isolation, the liquid-solid interaction and dynamic responses with stochastic excitations.

Performance Evaluation of Powdered Activated Carbon (PAC) Contactor for the Removal of Organics and Taste and Odor (분말활성탄 접촉조의 맛·냄새 및 유기물 제거 효율 평가)

  • Bae, Byung-Uk;Lim, Mun-Gu
    • Journal of Korean Society on Water Environment
    • /
    • v.26 no.4
    • /
    • pp.585-589
    • /
    • 2010
  • In order to evaluate the performance of a powdered activated carbon (PAC) contactor, two water treatment plants (WTP) were selected as target sites. The result of tracer tests showed that the plug flow portion of a bisymmetry-type contactor (H WTP) was more than 70%. A maze-type contactor (C WTP) also had more than 70% of plug flow portion after intra-basin baffles were installed. According to the operating data of the target WTPs, there was no clear evidence that the addition of PAC contributed to the removal of organics. However, the results of jar tests, conducted with the raw water taken from the H WTP, proved that PAC could remove dissolved organic carbon (DOC) to some extent when the proper velocity gradient was maintained. It was estimated that the production rate, defined as the ratio of the operating flowrate to the design flowrate, of the C and H WTPs was only 27 and 50%, respectively. Because of these lower production rates, the mixing intensity in the contactor was much less than the designed value and, finally, the performance of the PAC contactor was much lower than what was expected.

Input Shaping for Control of Liquid Sloshing (액체 슬로싱 제어를 위한 입력성형)

  • Kim, Dong-Joo;Hong, Seong-Wook;Kim, Kyoung-Jin
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.9
    • /
    • pp.1018-1024
    • /
    • 2011
  • Liquid sloshing occurs when a partially filled liquid tank is subjected to undesirable external forces or acceleration/deceleration for positioning control. Installation of baffles is still the most popular way to suppress the sloshing, but recent successes of input shaping in reducing structural vibrations may give a possible alternative. We aim at investigating the applicability of input shaping to sloshing suppression by numerically solving fluid motions in a rectangular tank. The tank is partially filled with water and it is suddenly put into a sequence of horizontal motions of acceleration and constant speed. The flow is assumed to be two-dimensional, incompressible, and in viscid, and a VOF two-phase model is used to capture the free surface. Results show that the sloshing can be successfully suppressed by shaping the input, i.e., the velocity or acceleration profile of tank. Three different input shapers (ZII, ZVD, and two-mode convolved ZV shapers) are tested and compared in this study Among them, the convolved ZV shaper shows a best performance to eliminate the sloshing almost completely.

NUMERICAL STUDY ON THE PERFORMANCE CHARACTERISTICS OF SHELL AND TUBE HEAT EXCHANGER BY FLOW DISTRIBUTORS : PART(II) HEAT TRANSFER CHARACTERISTICS (유동분배판에 의한 원통-다관형 열교환기의 성능 특성에 관한 수치해석적 연구(II): 전열특성)

  • Park, Y.M.;Lee, T.H.;Chung, H.T.;Kim, H.B.
    • Journal of computational fluids engineering
    • /
    • v.21 no.4
    • /
    • pp.28-32
    • /
    • 2016
  • In the previous study, it is proved by numerical simulation that the baffle shaped as the porous plate installed in the inlet chambers improves the redistribution of the flow injecting to the tube bundles. In the present study, numerical simulation has been performed to investigate the effects of the flow distributors on the thermal characteristics of the shell and tube heat exchangers. The flow fields have been analysed by the three-dimensional Navier-Stokes solvers including the thermal conditions on the shell sides. The numerical results showed that the presence of the baffles improves the redistribution of the heat transfer to the tube bundles though the overall performance drop slightly on the present flow conditions.