• 제목/요약/키워드: bacterial wilt disease

검색결과 109건 처리시간 0.018초

Fluorescent siderophore 생산균주, TS3-7에 의한 풋마름병 발병 억제 (Suppression of Bacterial Wilt with Fuorescent Pseudomonads, TS3-7 strain)

  • 김지태;조홍범;김신덕
    • Applied Biological Chemistry
    • /
    • 제48권3호
    • /
    • pp.296-300
    • /
    • 2005
  • Among the root colonizing and plant growth promoting bacteria isolated from the bacterial wilt suppressive soil, five strains were detected to produce siderophores by CAS agar assay. The most effective isolate, TS3-7 strain induced significant suppression of bacterial wilt disease in tomato and pepper plants. Seed treatment followed by soil drench application with this strain resulted in over 80% reduction of bacterial wilt disease compared with the control. Significant disease suppression by TS3-7 strain was related to the production of siderophore. Besides iron competition, induction of resistance of the host plant with siderophore was suggested to be another mode of action that suppress bacterial wilt, based on the lack of direct antibiosis against pathogen in vitro. According to Bergey's Manual of Systemic Bacteriology and 16S rDNA sequence data, TS3-7 stain was identified as Pseudomonas sp. TS3-7.

Biological Control of Soilborne Diseases on Tomato, Potato and Black Pepper by Selected PGPR in the Greenhouse and Field in Vietnam

  • Thanh, D.T.;Tarn, L.T.T.;Hanh, N.T.;Tuyen, N.H.;Srinivasan, Bharathkumar;Lee, Sang-Yeob;Park, Kyung-Seok
    • The Plant Pathology Journal
    • /
    • 제25권3호
    • /
    • pp.263-269
    • /
    • 2009
  • Bacterial wilt, Fusarium wilt and Foot rot caused by Ralstonia solanacearum, Fusarium oxysporum, and Phytophthora capsici respectively, continue to be severe problems to tomato, potato and black pepper growers in Vietnam. Three bio-products, Bacillus vallismortis EXTN-1 (EXTN-1), Bacillus sp. and Paenibacillus sp. (ESSC) and Bacillus substilis (MFMF) were examined in greenhouse bioassay for the ability to reduce bacterial wilt, fusarium wilt and foot rot disease severity. While these bio-products significantly reduced disease severities, EXTN-1 was the most effective, providing a mean level of disease reduction 80.0 to 90.0% against bacterial wilt, fusarium wilt and foot rot diseases under greenhouse conditions. ESSC and MFMF also significantly reduced fusarium wilt, bacterial wilt and foot rot severity under greenhouse conditions. Bio-product, EXTN-1 with the greatest efficacy under greenhouse condition was tested for the ability to reduce bacterial wilt, fusarium wilt and foot rot under field condition at Song Phuong and Thuong Tin locations in Ha Tay province, Vietnam. Under field condition, EXTN-1 provided a mean level of disease reduction more than 45.0% against all three diseases compared to water treated control. Besides, EXTN-1 treatment increased the yield in tomato fruits 17.3% than water treated control plants.

담배세균성마름병[립고병(立枯病)]에 대한 담배품종의 저항성 검정법 (Screening Procedure of Tobacco Cultivars for Resistant to Bacterial Wilt Caused by Ralstonia solanacearum)

  • 전용호;강여규
    • 한국연초학회지
    • /
    • 제30권1호
    • /
    • pp.1-7
    • /
    • 2008
  • Bacterial wilt caused by Ralstonia solanacearum has become a severe problem on tobacco in Korea. No effective single control measure is available at present time. One of the most potential way for controlling the bacterial wilt on tobacco is growing tobacco cultivars resistant to the bacterial wilt. In this study, optimal conditions for screening tobacco cultivars resistant to the bacterial wilt were examined to provide reproducible and efficient methods in growth chamber testing and field experiments for evaluating plant disease resistance. For this, already-known inoculation methods, inoculum densities, and incubation temperature, and plant growth stages at the time of inoculation were compared using tobacco cultivars resistant (Nicotiana tabacum cv, NC95), moderately resistant (N. tabacum cv. SPG70), and susceptible (N. tabacum BY4) to the bacterial disease. It was determined that root-dipping of tobacco seedlings at six true leaf stage into the bacterial suspension with inoculum level of $10^8$ colony-forming units (CFU)/ml for 20 min before transplanting was simple and most efficient in testing for resistance to the bacterial wilt of tobacco caused by R. solanacearum, for which disease incidences and severities were examined at 2 weeks of plant growth after inoculation at $20{\sim}25^{\circ}C$ in a growth chamber. These experimental conditions could discriminate one tobacco cultivar from the others by disease severity better than any other experimental conditions. In field testing, the optimum time for examining the disease occurrence was late June through early July. These results can be applied to establishing a technical manual for the screening of resistant tobacco cultivars against the bacterial wilt caused by R. solanacearum.

Reduced Tomato Bacterial Wilt by Ferrous Chloride Application

  • Hyeon Ji Kim;Su Min Kim;Yeon Hwa Kim;Jeong Hoon Park;Dong Ki Kang;Jae Gill Yun;Ryoung Shin;Jeum Kyu Hong
    • 식물병연구
    • /
    • 제29권1호
    • /
    • pp.82-87
    • /
    • 2023
  • Exogenous ferrous chloride (FeCl2) suppressed in vitro growth of Ralstonia pseudosolanacearum, causing bacteria for tomato bacterial wilt. More than 50 μM of FeCl2 reduced the in vitro bacterial growth in dosedependent manners. Two to 200 μM of FeCl2 did not affect the fresh weight of detached tomato leaves at 3 and 5 days after the petiole dipping without the bacterial inoculation. The bacterial wilt of the detached tomato leaves was evaluated by inoculating two different inoculum densities of R. pseudosolanacearum (105 and 107 cfu/ml) in the presence of FeCl2. Bacterial wilt in the detached leaves by 105 cfu/ml was efficiently attenuated by 10-200 μM of FeCl2 at 3 and 5 days post-inoculation (dpi), but bacterial wilt by 107 cfu/ml was only reduced by 200 μM of FeCl2 at 3 and 5 dpi. These results suggest that iron nutrients can be included in the integrated disease management of tomato bacterial wilt.

Effect of Bacterial Wilt on Fungal Community Composition in Rhizosphere Soil of Tobaccos in Tropical Yunnan

  • Zheng, Yuanxian;Wang, Jiming;Zhao, Wenlong;Cai, Xianjie;Xu, Yinlian;Chen, Xiaolong;Yang, Min;Huang, Feiyan;Yu, Lei;He, Yuansheng
    • The Plant Pathology Journal
    • /
    • 제38권3호
    • /
    • pp.203-211
    • /
    • 2022
  • Bacterial wilt, which is a major soil-borne disease with widespread occurrence, poses a severe danger in the field of tobacco production. However, there is very limited knowledge on bacterial wilt-induced microecological changes in the tobacco root system and on the interaction between Ralstonia solanacearum and fungal communities in the rhizosphere soil. Thus, in this study, changes in fungal communities in the rhizosphere soil of tobaccos with bacterial wilt were studied by 18S rRNA gene sequencing. The community composition of fungi in bacterial wilt-infected soil and healthy soil in two tobacco areas (Gengma and Boshang, Lincang City, Yunnan Province, China) was studied through the paired comparison method in July 2019. The results showed that there were significant differences in fungal community composition between the rhizosphere soil of diseased plants and healthy plants. The changes in the composition and diversity of fungal communities in the rhizosphere soil of tobaccos are vital characteristics of tobaccos with bacterial wilt, and the imbalance in the rhizosphere microecosystem of tobacco plants may further aggravate the disease.

연초의 세균성마름병 저항성 유전에 관한 연구 (Studies on the Inheritance of Resistance to Bacterial Wilt(Ralstonia solanacearum) in Tobacco(Nicotiana tabacum L.))

  • 정석훈
    • 한국연초학회지
    • /
    • 제22권1호
    • /
    • pp.25-30
    • /
    • 2000
  • Bacterial wilt(Ralstonia solanacearum) is one of the major diseases of flue-cured tobacco (Nicotiana tabacum L.) in the world. This study was conducted to investigate degree of dominance, selection, and correlation between leaf shape and degree of bacterial wilt resistance in flue-cured tobacco. The degree of disease caused by bacterial wilt was evaluated in parents, F$_1$, F$_2$ and F$_3$ populations of two crosses, BY 4 x NC 95 and BY 4 x Coker 86, in the infected field. The leaf shape index was also measured in parents and F$_2$ population of BY 4 x NC 95. The incidence of bacterial wilt was observed in the middle of June and peaked in late July, when the highest value of pathogen density reached 1.0 x 10$^{6}$ colony forming unit per gram. It was concluded that the inheritance mode of risestance to bacterial wilt in the above two crosses of susceptible and resistant varieties was recessive and polygenic. The resistance to bacterial wilt was significantly correlated with leaf shape in F2 generation of BY 4 x NC 95. But certain plants having narrower leaves were also resistant to bacterial wilt. It is considered that the bacterial wilt resistant lines having narrower leaves could be selected. The selection for bacterial wilt resistance in the F$_2$ population might be effective.

  • PDF

반수체 육종법을 이용한 잎담배 세균성마름병 저항성 개체 선발의 효율성 비교 (Selection Efficiency of Resistant Tobacco Plants to Bacterial wilt Disease Using Two Haploid Methods)

  • 정윤화
    • 한국연초학회지
    • /
    • 제15권2호
    • /
    • pp.137-144
    • /
    • 1993
  • The present study was conducted to compare the efficiency of individual plant selection for resistance to bacterial wilt with 30 dihaploid lines derived by anther culture and Nicotiana africana method in Fl and F2 generation from a cross between Bright Yellow 4 (BY4) and NC95. F2 dihaploid lines were selected from bacterial wilt disease resistant plants screened under the naturally infested filed conditions. The populations of FB - ADH and FB MDH derived from F2 individual plants with bacterial wilt resistance showed higher resistance to the disease than the populations of Fl - ADH and Fl - MDH, respectively, and no difference for the disease resistance appeared by the haploid deriving method within a generation.

  • PDF

Virulence of Xanthomonas translucens pv. poae Isolated from Poa annua

  • Chaves, Arielle;Mitkowski, Nathaniel
    • The Plant Pathology Journal
    • /
    • 제29권1호
    • /
    • pp.93-98
    • /
    • 2013
  • Bacterial wilt is a vascular wilt disease caused by Xanthomonas translucens pv. poae that infects Poa annua, a grass that is commonly found on golf course greens throughout the world. Bacterial wilt causes symptoms of etiolation, wilting, and foliar necrosis. The damage is most prevalent during the summer and the pathogen can kill turf under conditions optimal for disease development. Fifteen isolates of X. translucens pv. poae were collected from northern regions in the United States and tested for virulence against P. annua. All 15 isolates were pathogenic on P. annua, but demonstrated variable levels of virulence when inoculated onto P. annua under greenhouse conditions. The isolates were divided into two virulence groups. The first group containing four isolates generally resulted in less than 40% mortality following inoculation. The second group, containing the other eleven isolates, produced between 90 and 100% mortality following inoculation. These results suggest that differences in the virulence of bacterial populations present on a golf course may result in more or less severe amounts of observed disease.

Biocontrol Potential of a Lytic Bacteriophage PE204 against Bacterial Wilt of Tomato

  • Bae, Ju Young;Wu, Jing;Lee, Hyoung Ju;Jo, Eun Jeong;Murugaiyan, Senthilkumar;Chung, Eunsook;Lee, Seon-Woo
    • Journal of Microbiology and Biotechnology
    • /
    • 제22권12호
    • /
    • pp.1613-1620
    • /
    • 2012
  • Bacterial wilt caused by Ralstonia solanacearum is a devastating disease of many economically important crops. Since there is no promising control strategy for bacterial wilt, phage therapy could be adopted using virulent phages. We used phage PE204 as a model lytic bacteriophage to investigate its biocontrol potential for bacterial wilt on tomato plants. The phage PE204 has a short-tailed icosahedral structure and double-stranded DNA genome similar to that of the members of Podoviridae. PE204 is stable under a wide range of temperature and pH, and is also stable in the presence of the surfactant Silwet L-77. An artificial soil microcosm (ASM) to study phage stability in soil was adopted to investigate phage viability under a controlled system. Whereas phage showed less stability under elevated temperature in the ASM, the presence of host bacteria helped to maintain a stable phage population. Simultaneous treatment of phage PE204 at $10^8$ PFU/ml with R. solanacearum on tomato rhizosphere completely inhibited bacterial wilt occurrence, and amendment of Silwet L-77 at 0.1% to the phage suspension did not impair the disease control activity of PE204. The biocontrol activities of phage PE204 application onto tomato rhizosphere before or after R. solanacearum inoculation were also investigated. Whereas pretreatment with the phage was not effective in the control of bacterial wilt, post-treatment of PE204 delayed bacterial wilt development. Our results suggested that appropriate application of lytic phages to the plant root system with a surfactant such as Silwet L-77 could be used to control the bacterial wilt of crops.

Elevated CO2 and Temperature Effects on the Incidence of Four Major Chili Pepper Diseases

  • Shin, Jeong-Wook;Yun, Sung-Chul
    • The Plant Pathology Journal
    • /
    • 제26권2호
    • /
    • pp.178-184
    • /
    • 2010
  • Four major diseases of chili pepper including two fungal diseases, anthracnose (Colletotrichum acutatum) and Phytophthora blight (Phytophthora capsici), and two bacterial diseases, bacterial wilt (Ralstonia solanacearum) and bacterial spot (Xanthomonas campestris pv. vesicatoria), were investigated under future climate-change condition treatments in growth chambers. Treatments with elevated $CO_2$ and temperature were maintained at $720ppm{\pm}20ppm$ $CO_2$ and $30^{\circ}C{\pm}0.5^{\circ}C$, whereas ambient conditions were maintained at $420ppm{\pm}20ppm$ $CO_2$ and $25^{\circ}C{\pm}0.5^{\circ}C$. Pepper seedlings or fruits were infected with each pathogen, and then the disease progress was evaluated in the growth chambers. According to paired t-test analyses, bacterial wilt and spot diseases significantly increased by 24% (p=0.008) and 25% (p=0.016), respectively, with elevated $CO_2$ and temperature conditions. On the other hand, neither Phytophthora blight (p=0.906) nor anthracnose (p=0.125) was statistically significant. The elevated $CO_2$ and temperature accelerated the progress of bacterial wilt by two days and bacterial spot by one day compared to the ambient treatment. Temperature regime studies of the diseases without changes in $CO_2$ confirmed that the accelerated bacterial disease progress was mainly due to the increased temperature rather than the elevated $CO_2$ conditions.