DOI QR코드

DOI QR Code

Elevated CO2 and Temperature Effects on the Incidence of Four Major Chili Pepper Diseases

  • Received : 2010.03.25
  • Accepted : 2010.05.06
  • Published : 2010.06.30

Abstract

Four major diseases of chili pepper including two fungal diseases, anthracnose (Colletotrichum acutatum) and Phytophthora blight (Phytophthora capsici), and two bacterial diseases, bacterial wilt (Ralstonia solanacearum) and bacterial spot (Xanthomonas campestris pv. vesicatoria), were investigated under future climate-change condition treatments in growth chambers. Treatments with elevated $CO_2$ and temperature were maintained at $720ppm{\pm}20ppm$ $CO_2$ and $30^{\circ}C{\pm}0.5^{\circ}C$, whereas ambient conditions were maintained at $420ppm{\pm}20ppm$ $CO_2$ and $25^{\circ}C{\pm}0.5^{\circ}C$. Pepper seedlings or fruits were infected with each pathogen, and then the disease progress was evaluated in the growth chambers. According to paired t-test analyses, bacterial wilt and spot diseases significantly increased by 24% (p=0.008) and 25% (p=0.016), respectively, with elevated $CO_2$ and temperature conditions. On the other hand, neither Phytophthora blight (p=0.906) nor anthracnose (p=0.125) was statistically significant. The elevated $CO_2$ and temperature accelerated the progress of bacterial wilt by two days and bacterial spot by one day compared to the ambient treatment. Temperature regime studies of the diseases without changes in $CO_2$ confirmed that the accelerated bacterial disease progress was mainly due to the increased temperature rather than the elevated $CO_2$ conditions.

Keywords

References

  1. Ainsworth, E. A., Davey, P. A., Bernacchi, C. J., Dermody, O. C., Heaton, E. A., Moore, D. J., Morgan, P. B., Naidu, S. L., Yoora, H. S., Zhu, X. G., Curtis, P. S. and Long, S. P. 2002. A meta-analysis of elevated [$CO_2$] effects on soybean (Glycine max) physiology, growth and yield. Global Change Biol. 8:695-709. https://doi.org/10.1046/j.1365-2486.2002.00498.x
  2. Anderson, P. K., Cunningham, A. A., Patel, N. G., Morales, F. J., Epstein, P. R. and Daszak, P. 2004. Emerging infectious diseases of plants: pathogen pollution, climate change and agrotechnology drivers. Trends Ecolo. Evol. 19:535-544. https://doi.org/10.1016/j.tree.2004.07.021
  3. Chakraborty, S., Murray, G. M., Magarey, P. A., Yonow, T., O’Brien, R., Croft, B. J., Barbetti, M. J., Sivasithamparam, K., Old, K. M., Dudzinski, M. J., Sutherst, R. W., Penrose, L. J., Archer, C. and Emmett, R. W. 1998. Potential impact of climate change on plant diseases of economic significance to Australia. Aus. Plant Pathol. 27:15-35. https://doi.org/10.1071/AP98001
  4. Chakraborty, S., Pangga, I. B., Lupton, J., Hart, L., Room, P. M. and Yates, D. 2000a. Production and dispersal of Colletotrichum gloeosporioides spores on Stylosanthes scabra under elevated $CO_2$. Environ. Pollut. 108:381-387. https://doi.org/10.1016/S0269-7491(99)00217-1
  5. Chakraborty, S., Tiedemann, A. V. and Teng, P. S. 2000b. Climate change: potential impact on plant diseases. Environ. Pollut. 108:317-326. https://doi.org/10.1016/S0269-7491(99)00210-9
  6. Chakraborty, S. and Datta, S. 2003. How will plant pathogens adapt to host plant resistance at elevated $CO_2$ under a changing climate? New Phytol. 159:733-742. https://doi.org/10.1046/j.1469-8137.2003.00842.x
  7. Chakraborty, S., Luck, J., Hollaway, G., Freeman, A., Norton, R., Garrett, K. A., Percy, K., Hopkins, A., Davis, C. and Karnosky, D. F. 2008. Impacts of global change on diseases of agricultural crops and forest trees. CAB Reviews: Perspectives in Agriculture, Veterinary Science, Nutri. Nat. Resour. 3:1-15.
  8. Coakley, S. M., Scherm, H. and Chakraborty, S. 1999. Climate change and plant disease management. Annu. Rev. Phytopathol. 37:399-426. https://doi.org/10.1146/annurev.phyto.37.1.399
  9. Eastburn, D. M., Degennaro, M. M., Delucia, E. H., Dermody, O. and McElrone, A. J. 2010. Elevated atmospheric carbon dioxide and ozone alter soybean diseases at SoyFACE. Global Change Biol. 16:320-330. https://doi.org/10.1111/j.1365-2486.2009.01978.x
  10. Farrar, J. F. and Gunn, S. 1996. Effects of temperature and atmospheric carbon dioxide on source-sink relations in the context of climate change. In: Photoassimilate distribution in plants and crop source-sink relationships, ed. by E. Zamski and A.A. Schaffer, pp 389-406. Marcel Dekker Inc., New York, USA.
  11. Harris, J. A., Hobbs, R. J., Higgs, E. and Aronson, J. 2006. Ecological restoration and global climate change. Restor. Ecol. 14:170-176. https://doi.org/10.1111/j.1526-100X.2006.00136.x
  12. Hibberd, J. M., Richardson, P., Whitbread, R. and Farrar, J. F. 1996a. Effects of leaf age, basal meristem and infection with powdery mildew on photosynthesis in barley grown in 700 ${\mu}$ mol mol−1 $CO_2$. New Phytol. 134:317-325. https://doi.org/10.1111/j.1469-8137.1996.tb04636.x
  13. Hibberd, J. M., Whitbread, R. and Farrar, J. F. 1996b. Effect of 700 ${\mu}$ mol mol−1 $CO_2$ and infection with powdery mildew on the growth and carbon partitioning of barley. New Phytol. 134:309-315.
  14. Hibberd, J. M., Whitbread, R. and Farrar, J. F. 1996c. Effect of elevated concentrations of $CO_2$ in infection of barley by Erysiphe graminis. Physiol. Mol. Plant Pathol. 48:37-53. https://doi.org/10.1006/pmpp.1996.0004
  15. Intergovernmental Panel on Climate Change. 2007. Climate change 2007: Synthesis Report. Contribution of Working Group I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, ed. by R. K. Pachauri and A. Reisinger, IPCC, Geneva, Switzerland. 104 pp.
  16. Jwa, N. S. and Walling, L. L. 2001. Influence of elevated $CO_2$ concentration on disease development in tomato. New Phytol. 149:509-518. https://doi.org/10.1046/j.1469-8137.2001.00063.x
  17. Kang, B. K., Kim, J., Lee, K. H., Lim, S. C., Ji, J. J., Lee, J. W. and Kim, H. T. 2009. Effects of temperature and moisture on the survival of Colletotrichum acutatum, the causal agent of pepper anthracnose in soil and pepper fruit debris. Plant Pathol. J. 25:128-135. https://doi.org/10.5423/PPJ.2009.25.2.128
  18. Kaukoranta, T. 1996. Impact of global warming on potato late blight: risks, yield loss and control. Agri. Food Sci. Finland 5:311-327.
  19. Kimball B. A. 1983. $CO_2$ and agricultural yield: An assemblage and analysis of 430 observations. Agron. J. 75:779-788. https://doi.org/10.2134/agronj1983.00021962007500050014x
  20. Luo, Y., TeBeest, D. O., Teng, P. S. and Fabellar, N.G. 1995. Simulation studies on risk analysis of rice blast epidemics associated with global climate in several Asian countries. J. Biogeography 22:673-678. https://doi.org/10.2307/2845969
  21. Manning, W. J. and Tiedemann, A. V. 1995. Climate change: Potential effects of increased atmospheric carbon dioxide ($CO_2$), ozone (O3), and ultraviolet-B (UV-B), radiation on plant diseases. Environ. Pollut. 88:219-245. https://doi.org/10.1016/0269-7491(95)91446-R
  22. McElrone, A. J., Reid, C. D., Hoye, K. A. Hart, E. and Jackson, R. B. 2005. Elevated $CO_2$ reduces disease incidence and severity of a red maple fungal pathogen via changes in host physiology and leaf chemistry. Global Change Biol. 11:1828-1836. https://doi.org/10.1111/j.1365-2486.2005.001015.x
  23. Min, S. K., Legutke, S., Hense, A., Cubasch, U., Kwon, W. T., Oh, J. H. and Schles, U. 2006. East asian climate change in the 21st century as simulated by the coupled climate model ECHO-G under IPCC SRES scenarios. J. Meteor. Soc. Japan 82:1187-1211. https://doi.org/10.2151/jmsj.2004.1187
  24. Mouseau, M. and Saugier, B. 1992. The direct effect of increased $CO_2$ on gas exchange and growth of forest tree species. J. Exp. Bot. 43:1121-1130. https://doi.org/10.1093/jxb/43.8.1121
  25. Myung, I. S., Hong, S. K., Lee, Y. K., Choi, H. W., Shim, H. S., Park, J. W., Park, K. S., Lee, S. Y., Lee, S. D., Lee, S. H., Choi, H. S., Kim, Y. G., Shin, D. B., Ra, D. S., Yeh, W. H., Han, S. S. and Cho, W. D. 2006. Review of disease incidence of major crops in the South Korea in 2005. Res. Plant Dis. (in Korean) 12:153-157. https://doi.org/10.5423/RPD.2006.12.3.153
  26. Pangga, I. B., Chakraborty, S. and Yates, D. 2004. Canopy size and induced resistance in Stylosanthes scabra determine anthracnose severity at high $CO_2$. Phytopathology 94:221-227. https://doi.org/10.1094/PHYTO.2004.94.3.221
  27. Percy, K. E., Awmack, C. S., Lindroth, R. L., Kubiske, M. E., Kopper, B. J., Isebrands, J. G., Pregitzer, K. S., Hendrey, G. R., Dickson, R. E., Zak, D. R., Oksanen, E., Sober, J., Harrington, R. and Karnosky, D. F. 2002. Altered performance of forest pests under atmospheres enriched by $CO_2$ and $O_3$. Nature 420:403-407. https://doi.org/10.1038/nature01028
  28. Runion, G. B. 2003. Climate change and plant pathosystemsfuture disease prevention starts here. New Phytol. 159:531-538. https://doi.org/10.1046/j.1469-8137.2003.00868.x
  29. Yun, S. C. and Ahn, M. I. 2009. Effects on net photosynthesis in field-grown hot peppers responding to the increased $CO_2$ and temperature. Kor. J. Environ. Agri. 28:106-112. https://doi.org/10.5338/KJEA.2009.28.2.106

Cited by

  1. Impact of Climate Change on Fungicide Spraying for Anthracnose on Hot Pepper in Korea During 2011-2100 vol.13, pp.1, 2011, https://doi.org/10.5532/KJAFM.2011.13.1.010
  2. Wild Type Sensitivity and Mutation Analysis for Resistance Risk to Fluopicolide inPhytophthora capsici vol.95, pp.12, 2011, https://doi.org/10.1094/PDIS-05-11-0372
  3. Plant pathogens, insect pests and weeds in a changing global climate: a review of approaches, challenges, research gaps, key studies and concepts vol.151, pp.02, 2013, https://doi.org/10.1017/S0021859612000500
  4. Climate change and multitrophic interactions in soil: the primacy of plants and functional domains vol.18, pp.7, 2012, https://doi.org/10.1111/j.1365-2486.2012.02667.x
  5. The Influence of Materials for Surface Mulching on Soil Temperature and Vegetative Growth of Apple Nursery Trees vol.13, pp.1, 2011, https://doi.org/10.5532/KJAFM.2011.13.1.001
  6. Changes in the Aggressiveness and Fecundity of Hot Pepper Anthracnose Pathogen (Colletotricum acutatum) under Elevated CO2and Temperature over 100 Infection Cycles vol.32, pp.3, 2016, https://doi.org/10.5423/PPJ.NT.09.2015.0183
  7. Development of a Model to Predict the Primary Infection Date of Bacterial Spot (Xanthomonas campestris pv. vesicatoria) on Hot Pepper vol.30, pp.2, 2014, https://doi.org/10.5423/PPJ.OA.09.2013.0090
  8. The severity of wheat diseases increases when plants and pathogens are acclimatized to elevated carbon dioxide vol.21, pp.7, 2015, https://doi.org/10.1111/gcb.12899
  9. Sensitivity of Isolates of Phytophthora capsici from the Eastern United States to Fluopicolide vol.95, pp.11, 2011, https://doi.org/10.1094/PDIS-03-11-0242
  10. Impact of moderate and extreme climate change scenarios on growth, morphological features, photosynthesis, and fruit production of hot pepper vol.8, pp.1, 2017, https://doi.org/10.1002/ece3.3647
  11. Complete genome sequence of DU_RP_II, a novel Ralstonia solanacearum phage of the family Podoviridae vol.163, pp.1, 2018, https://doi.org/10.1007/s00705-017-3577-9