DOI QR코드

DOI QR Code

Production of Surfactin and Iturin by Bacillus licheniformis N1 Responsible for Plant Disease Control Activity

  • Received : 2010.01.19
  • Accepted : 2010.03.21
  • Published : 2010.06.30

Abstract

Bacillus licheniformis N1, previously developed as a biofungicide formulation N1E to control gray mold disease of plants, was investigated to study the bacterial traits that may be involved in its biological control activity. Two N1E based formulations, bacterial cell based formulation PN1E and culture supernatant based formulation SN1E, were evaluated for disease control activity against gray mold disease of tomato and strawberry plants. Neither PN1E nor SN1E was as effective as the original formulation N1E. Fractionation of antifungal compounds from the bacterial culture supernatant of B. licheniformis N1 indicated that two different cyclic lipopeptides were responsible for the antimicrobial activity of the N1 strain. These two purified compounds were identified as iturin A and surfactin by HPLC and LCMS. The purified lipopeptides were evaluated for plant disease control activity against seven plant diseases. Crude extracts and purified compounds applied at 500 ${\mu}g/ml$ concentration controlled tomato gray mold, tomato late blight and pepper anthracnose effectively with over 70% disease control value. While iturin showed broad spectrum activity against all tested plant diseases, the control activity by surfactin was limited to tomato gray mold, tomato late blight, and pepper anthracnose. Although antifungal compounds from B. licheniformis N1 exhibited disease control activity, our results suggested that bacterial cells present in the N1E formulation also contribute to the disease control activity together with the antifungal compounds.

Keywords

References

  1. Asaka, O. and Shoda, M. 1996. Biocontrol of Rhizoctonia solani damping-off of tomato with Bacillus subtilis RB14. Appl. Environ. Microbiol. 62:4081-4085.
  2. Bonmatin, J-M., Laprevote, O. and Peypoux, F. 2003. Diversity among microbial cyclic lipopeptides: iturins and surfactins. Activity-structure relationships to design new bioactive agents. Comb. Chem. High Throughput Screen. 6:541-556. https://doi.org/10.2174/138620703106298716
  3. Brannen, P. M. and Kenney, D. S. 1997. Kodiak${\circledR}$-a successful biological-control product for suppression of soil-borne plant pathogens of cotton. J. Ind. Microbiol. Biot. 19:169-171. https://doi.org/10.1038/sj.jim.2900439
  4. Cho, J-Y., Choi, G. J., Lee, S-W., Jang, K. S., Lim, H. K., Lim, C. H., Lee, S. O., Cho, K. Y. and Kim, J-C. 2006. Antifungal activity against Collectotrichum spp. of curcuminoids isolated from Curcuma longa L. rhizomes. J. Microbiol. Biotechnol. 16:280-285.
  5. Emmert, E. A. B. and Handelsman, J. 1999. Biocontrol of plant disease: a (Gram-) positive perspective. FEMS Microbiol. Lett. 171:1-9. https://doi.org/10.1111/j.1574-6968.1999.tb13405.x
  6. Fravel, D. R., Connick Jr., W. J. and Lewis, J. A. 1998. Formulation of microorganisms to control plant diseases. In: Formulation of microbial pesticides: Beneficial microorganisms, nematodes and seed treatments, eds by H. D. Burges, pp. 187-202. Kluwer Academic Publishers, Dordrecht, The Netherlands.
  7. Gueldner, R. C., Reilly, C. C., Pusey, P. L., Costello, C. E., Arrendale, R. F., Cox, R. H., Himmelsbach, D. S., Crumley, F. G. and Cutler, G. 1988. Isolation and identification of iturins as antifungal peptides in biological control of peach brown rot with Bacillus subtilis. J. Agric. Food Chem. 36:366-370. https://doi.org/10.1021/jf00080a031
  8. Handelsman, J. and Stabb, E. V. 1996. Biocontrol of soilborne plant pathogens. Plant Cell 8:1855-1869. https://doi.org/10.1105/tpc.8.10.1855
  9. Huszcz, E. and Burczyk, B. 2006. Surfactin isoforms from Bacillus coagulans. Z. Naturforsch. [C] 61:727-733.
  10. Jacques, P., Hbid, C., Destain, J., Razafindralambo, H., Paquot, M., De Pauw, E. and Thonart, P. 1999. Optimization of biosurfactant lipopeptide production from Bacillus subtilis S499 by Plackett-Burman design. Appl. Biochem. Biotechnol. 77:223-233. https://doi.org/10.1385/ABAB:77:1-3:223
  11. Kim, H. J., Lee, S. H., Kim, C. S., Lim, E. K., Choi, K. H., Kong, H. G., Kim, D. W., Lee, S-W. and Moon, B. J. 2007. Biological control of strawberry gray mold caused by Botrytis cinerea using Bacillus licheniformis N1 formulation. J. Microbiol. Biotechnol. 17:438-444.
  12. Kim, J-C., Choi, G. J., Kim, H-J., Kim, H. T., Ahn, J. W. and Cho, K. Y. 2001. Activity against plant pathogenic fungi of phomalactone isolated from Nigrospora sphaerica. Pest. Manag. Sci. 60:803-808.
  13. Kim, P. I., Bai, H., Bai, D., Chae, H., Chung, S., Kim, Y., Park, R. M. and Chi, Y.-T. 2004. Purification and characterizatio of a lipopeptide produced by Bacillus thuringiensis CMB26. J. Appl. Microbiol. 97:942-949. https://doi.org/10.1111/j.1365-2672.2004.02356.x
  14. Kinsinger, R. F., Shirk, M. C. and Fall, R. 2003. Rapid surface motility in Bacillus subtilis is dependent on extracellular surfactin and potassium ion. J. Bacteriol. 185:5627-5631. https://doi.org/10.1128/JB.185.18.5627-5631.2003
  15. Koumoutsi, A., Chen, X-H., Henne, A., Liesegang, H., Hitzeroth, G., Franke, P., Vater, J. and Borriss, R. 2004. Structural and functional characterization of gene clusters directing nonribiosomal synthesis of bioactive cyclic lipopeptides in Bacillus amyloliquefaciens strain FZB42. J. Bacteriol. 186:1084-1096. https://doi.org/10.1128/JB.186.4.1084-1096.2004
  16. Leclère, V., Marti, R., Bechet, M., Fickers, P. and Jacques, P. 2006. The lipopeptides mycosubtilin and surfactin enhance spreading of Bacillus subtilis strains by their surface-active properties. Arch. Microbiol. 186:475-483. https://doi.org/10.1007/s00203-006-0163-z
  17. Lee, K. Y., Heo, K. R., Choi, K. H., Kong, H. G., Nam, J., Yi, Y. B., Park, S. H., Lee, S-W. and Moon, B. J. 2009. Characterization of a chitinase gene exhibiting antifungal activity from a biocontrol bacterium Bacillus licheniformis N1. Plant Pathol. J. 25:344-351. https://doi.org/10.5423/PPJ.2009.25.4.344
  18. Lee, J. P., Lee, S.-W., Kim, C. S., Son, J. H., Song, J. H., Lee, K. W., Kim, H. J., Jung, S. J. and Moon, B. J. 2006. Evalution of formulations of Baillus licheniformis for the biological control of tomato gray mold caused by Botrytis cinerea. Biol. Control 37: 329-337. https://doi.org/10.1016/j.biocontrol.2006.01.001
  19. Maget-Dana, R., Thimon, L., Peypoux, F. and Ptak, M. 1992. Surfactin/iturin A interactions may explain the synergistic effect of surfactin on the biological properties of iturin A. Biochimie 74:1047-1051. https://doi.org/10.1016/0300-9084(92)90002-V
  20. Mahaffee, W. F. and Backman, P. A. 1993. Effects of seed factors on spermosphere and rhizosphere colonization of cotton by Bacillus subtilis GB03. Phytopathology 83:1120-1125. https://doi.org/10.1094/Phyto-83-1120
  21. Ongena, M., Duby, F., Jourdan, E., Beaudry, T., Jadin, V., Dommes, J. and Thonart, P. 2005. Bacillus subtilis M4 decreases plant susceptibility towards fungal pathogens by increasing host resistance associated with differential gene expression. Appl. Microbiol. Biotechnol. 67:692-698. https://doi.org/10.1007/s00253-004-1741-0
  22. Ongena, M., Jourdan, E., Adam, A., Paquot, M., Brans, A., Joris, B., Arpigny, J.-L. and Thonart, P. 2007. Surfactin and fengycin lipopeptides of Bacillus subtilis as elicitors of induced systemic resistance in plants. Environ. Microbiol. 9:1084-1090. https://doi.org/10.1111/j.1462-2920.2006.01202.x
  23. Ongena, M. and Jacques, P. 2007. Bacillus lipopeptides: versatile weapons for plant disease control. Trends Microbiol. 16:115-125. https://doi.org/10.1016/j.tim.2007.12.009
  24. Peypoux, F., Bonmatin, J.-M. and Wallach, J. 1999. Recent trends in the biochemistry of surfactin. Appl. Microbiol. Biotechnol. 51:553-563. https://doi.org/10.1007/s002530051432
  25. Schisler, D. A., Slininger, P. J., Behle, R. W. and Jackson, M. A. 2004. Formulation of Bacillus spp. for biological control of plant diseases. Phytopathology 94:1267-1271. https://doi.org/10.1094/PHYTO.2004.94.11.1267
  26. Stein, T. 2005. Bacillus subtilis an antibiotics: structure, syntheses and specific functions. Mol. Microbiol. 56:845-857. https://doi.org/10.1111/j.1365-2958.2005.04587.x
  27. Toure, Y., Ongena, M., Jacques, P., Guiro, A. and Thonart, P. 2004. Role of lipopeptides produced by Bacillus subtilis GA1 in the reduction of grey mould disease caused by Botrytis cinerea on apple. J. Appl. Microbiol. 96:1151-1160. https://doi.org/10.1111/j.1365-2672.2004.02252.x
  28. Tsuge, K., Ano, T., Hirai, M., Nakamura, Y. and Shoda, K. 1999. The genes degQ, pps, and lpa-8 (sfp) are responsible for conversion of Bacillus subtilis 168 to plipastatin production. Antimicrob. Agents Chemother. 43:2183-2192.

Cited by

  1. Effects of rhizobacteria Paenibacillus polymyxa APEC136 and Bacillus subtilis APEC170 on biocontrol of postharvest pathogens of apple fruits vol.17, pp.12, 2016, https://doi.org/10.1631/jzus.B1600117
  2. Isolation and identification of antifungal peptides from Bacillus amyloliquefaciens W10 2017, https://doi.org/10.1007/s11356-017-0179-8
  3. Proteolytic activity of thermophilic Bacillus licheniformis strain SF5-1 for the efficient bioconversion of pork waste to amino acid fertiliser vol.111, 2016, https://doi.org/10.1016/j.ibiod.2016.04.012
  4. Antagonistic Activities of Bacillus spp. Strains Isolated from Tidal Flat Sediment Towards Anthracnose Pathogens Colletotrichum acutatum and C. gloeosporioides in South Korea vol.31, pp.2, 2015, https://doi.org/10.5423/PPJ.OA.03.2015.0036
  5. Versatile Antagonistic Activities of Soil-Borne Bacillus spp. and Pseudomonas spp. against Phytophthora infestans and Other Potato Pathogens vol.9, pp.1664-302X, 2018, https://doi.org/10.3389/fmicb.2018.00143