References
- Asaka, O. and Shoda, M. 1996. Biocontrol of Rhizoctonia solani damping-off of tomato with Bacillus subtilis RB14. Appl. Environ. Microbiol. 62:4081-4085.
- Bonmatin, J-M., Laprevote, O. and Peypoux, F. 2003. Diversity among microbial cyclic lipopeptides: iturins and surfactins. Activity-structure relationships to design new bioactive agents. Comb. Chem. High Throughput Screen. 6:541-556. https://doi.org/10.2174/138620703106298716
-
Brannen, P. M. and Kenney, D. S. 1997. Kodiak
${\circledR}$ -a successful biological-control product for suppression of soil-borne plant pathogens of cotton. J. Ind. Microbiol. Biot. 19:169-171. https://doi.org/10.1038/sj.jim.2900439 - Cho, J-Y., Choi, G. J., Lee, S-W., Jang, K. S., Lim, H. K., Lim, C. H., Lee, S. O., Cho, K. Y. and Kim, J-C. 2006. Antifungal activity against Collectotrichum spp. of curcuminoids isolated from Curcuma longa L. rhizomes. J. Microbiol. Biotechnol. 16:280-285.
- Emmert, E. A. B. and Handelsman, J. 1999. Biocontrol of plant disease: a (Gram-) positive perspective. FEMS Microbiol. Lett. 171:1-9. https://doi.org/10.1111/j.1574-6968.1999.tb13405.x
- Fravel, D. R., Connick Jr., W. J. and Lewis, J. A. 1998. Formulation of microorganisms to control plant diseases. In: Formulation of microbial pesticides: Beneficial microorganisms, nematodes and seed treatments, eds by H. D. Burges, pp. 187-202. Kluwer Academic Publishers, Dordrecht, The Netherlands.
- Gueldner, R. C., Reilly, C. C., Pusey, P. L., Costello, C. E., Arrendale, R. F., Cox, R. H., Himmelsbach, D. S., Crumley, F. G. and Cutler, G. 1988. Isolation and identification of iturins as antifungal peptides in biological control of peach brown rot with Bacillus subtilis. J. Agric. Food Chem. 36:366-370. https://doi.org/10.1021/jf00080a031
- Handelsman, J. and Stabb, E. V. 1996. Biocontrol of soilborne plant pathogens. Plant Cell 8:1855-1869. https://doi.org/10.1105/tpc.8.10.1855
- Huszcz, E. and Burczyk, B. 2006. Surfactin isoforms from Bacillus coagulans. Z. Naturforsch. [C] 61:727-733.
- Jacques, P., Hbid, C., Destain, J., Razafindralambo, H., Paquot, M., De Pauw, E. and Thonart, P. 1999. Optimization of biosurfactant lipopeptide production from Bacillus subtilis S499 by Plackett-Burman design. Appl. Biochem. Biotechnol. 77:223-233. https://doi.org/10.1385/ABAB:77:1-3:223
- Kim, H. J., Lee, S. H., Kim, C. S., Lim, E. K., Choi, K. H., Kong, H. G., Kim, D. W., Lee, S-W. and Moon, B. J. 2007. Biological control of strawberry gray mold caused by Botrytis cinerea using Bacillus licheniformis N1 formulation. J. Microbiol. Biotechnol. 17:438-444.
- Kim, J-C., Choi, G. J., Kim, H-J., Kim, H. T., Ahn, J. W. and Cho, K. Y. 2001. Activity against plant pathogenic fungi of phomalactone isolated from Nigrospora sphaerica. Pest. Manag. Sci. 60:803-808.
- Kim, P. I., Bai, H., Bai, D., Chae, H., Chung, S., Kim, Y., Park, R. M. and Chi, Y.-T. 2004. Purification and characterizatio of a lipopeptide produced by Bacillus thuringiensis CMB26. J. Appl. Microbiol. 97:942-949. https://doi.org/10.1111/j.1365-2672.2004.02356.x
- Kinsinger, R. F., Shirk, M. C. and Fall, R. 2003. Rapid surface motility in Bacillus subtilis is dependent on extracellular surfactin and potassium ion. J. Bacteriol. 185:5627-5631. https://doi.org/10.1128/JB.185.18.5627-5631.2003
- Koumoutsi, A., Chen, X-H., Henne, A., Liesegang, H., Hitzeroth, G., Franke, P., Vater, J. and Borriss, R. 2004. Structural and functional characterization of gene clusters directing nonribiosomal synthesis of bioactive cyclic lipopeptides in Bacillus amyloliquefaciens strain FZB42. J. Bacteriol. 186:1084-1096. https://doi.org/10.1128/JB.186.4.1084-1096.2004
- Leclère, V., Marti, R., Bechet, M., Fickers, P. and Jacques, P. 2006. The lipopeptides mycosubtilin and surfactin enhance spreading of Bacillus subtilis strains by their surface-active properties. Arch. Microbiol. 186:475-483. https://doi.org/10.1007/s00203-006-0163-z
- Lee, K. Y., Heo, K. R., Choi, K. H., Kong, H. G., Nam, J., Yi, Y. B., Park, S. H., Lee, S-W. and Moon, B. J. 2009. Characterization of a chitinase gene exhibiting antifungal activity from a biocontrol bacterium Bacillus licheniformis N1. Plant Pathol. J. 25:344-351. https://doi.org/10.5423/PPJ.2009.25.4.344
- Lee, J. P., Lee, S.-W., Kim, C. S., Son, J. H., Song, J. H., Lee, K. W., Kim, H. J., Jung, S. J. and Moon, B. J. 2006. Evalution of formulations of Baillus licheniformis for the biological control of tomato gray mold caused by Botrytis cinerea. Biol. Control 37: 329-337. https://doi.org/10.1016/j.biocontrol.2006.01.001
- Maget-Dana, R., Thimon, L., Peypoux, F. and Ptak, M. 1992. Surfactin/iturin A interactions may explain the synergistic effect of surfactin on the biological properties of iturin A. Biochimie 74:1047-1051. https://doi.org/10.1016/0300-9084(92)90002-V
- Mahaffee, W. F. and Backman, P. A. 1993. Effects of seed factors on spermosphere and rhizosphere colonization of cotton by Bacillus subtilis GB03. Phytopathology 83:1120-1125. https://doi.org/10.1094/Phyto-83-1120
- Ongena, M., Duby, F., Jourdan, E., Beaudry, T., Jadin, V., Dommes, J. and Thonart, P. 2005. Bacillus subtilis M4 decreases plant susceptibility towards fungal pathogens by increasing host resistance associated with differential gene expression. Appl. Microbiol. Biotechnol. 67:692-698. https://doi.org/10.1007/s00253-004-1741-0
- Ongena, M., Jourdan, E., Adam, A., Paquot, M., Brans, A., Joris, B., Arpigny, J.-L. and Thonart, P. 2007. Surfactin and fengycin lipopeptides of Bacillus subtilis as elicitors of induced systemic resistance in plants. Environ. Microbiol. 9:1084-1090. https://doi.org/10.1111/j.1462-2920.2006.01202.x
- Ongena, M. and Jacques, P. 2007. Bacillus lipopeptides: versatile weapons for plant disease control. Trends Microbiol. 16:115-125. https://doi.org/10.1016/j.tim.2007.12.009
- Peypoux, F., Bonmatin, J.-M. and Wallach, J. 1999. Recent trends in the biochemistry of surfactin. Appl. Microbiol. Biotechnol. 51:553-563. https://doi.org/10.1007/s002530051432
- Schisler, D. A., Slininger, P. J., Behle, R. W. and Jackson, M. A. 2004. Formulation of Bacillus spp. for biological control of plant diseases. Phytopathology 94:1267-1271. https://doi.org/10.1094/PHYTO.2004.94.11.1267
- Stein, T. 2005. Bacillus subtilis an antibiotics: structure, syntheses and specific functions. Mol. Microbiol. 56:845-857. https://doi.org/10.1111/j.1365-2958.2005.04587.x
- Toure, Y., Ongena, M., Jacques, P., Guiro, A. and Thonart, P. 2004. Role of lipopeptides produced by Bacillus subtilis GA1 in the reduction of grey mould disease caused by Botrytis cinerea on apple. J. Appl. Microbiol. 96:1151-1160. https://doi.org/10.1111/j.1365-2672.2004.02252.x
- Tsuge, K., Ano, T., Hirai, M., Nakamura, Y. and Shoda, K. 1999. The genes degQ, pps, and lpa-8 (sfp) are responsible for conversion of Bacillus subtilis 168 to plipastatin production. Antimicrob. Agents Chemother. 43:2183-2192.
Cited by
- Effects of rhizobacteria Paenibacillus polymyxa APEC136 and Bacillus subtilis APEC170 on biocontrol of postharvest pathogens of apple fruits vol.17, pp.12, 2016, https://doi.org/10.1631/jzus.B1600117
- Isolation and identification of antifungal peptides from Bacillus amyloliquefaciens W10 2017, https://doi.org/10.1007/s11356-017-0179-8
- Proteolytic activity of thermophilic Bacillus licheniformis strain SF5-1 for the efficient bioconversion of pork waste to amino acid fertiliser vol.111, 2016, https://doi.org/10.1016/j.ibiod.2016.04.012
- Antagonistic Activities of Bacillus spp. Strains Isolated from Tidal Flat Sediment Towards Anthracnose Pathogens Colletotrichum acutatum and C. gloeosporioides in South Korea vol.31, pp.2, 2015, https://doi.org/10.5423/PPJ.OA.03.2015.0036
- Versatile Antagonistic Activities of Soil-Borne Bacillus spp. and Pseudomonas spp. against Phytophthora infestans and Other Potato Pathogens vol.9, pp.1664-302X, 2018, https://doi.org/10.3389/fmicb.2018.00143