DOI QR코드

DOI QR Code

Phenotypic and Genotypic Analysis of Rice Lesion Mimic Mutants

  • Received : 2010.01.17
  • Accepted : 2010.02.25
  • Published : 2010.06.30

Abstract

Lesion mimic mutant (LMM) plants display spontaneous necrotic lesions on their leaves without any pathogenic infection. Specific rice LMMs designated as spotted leaf (spl) including spl1, spl3, spl4, spl5 and spl6 are genetically known as lesion resembling disease (lrd) mutant. The inheritance patterns in the $F_1$ and $F_2$ progenies of these mutants are controlled by recessive genetic factors. Lesion development in the rice LMMs were controlled by both development stages and environmental factors. The rice LMMs exhibited higher numbers of spots under $45^{\circ}C$ temperature than those under $30^{\circ}C$. Contents of chlorophyll were drastically reduced at 60 days old LMM leaves when the spot formation was severe. The levels of endogenous hydrogen peroxide were highest at 45 days old mutants but reduced at 60 days old. Transcription levels of stress related genes including thioredoxin peroxidase and protein disulfide isomerase were reduced in spotted leaves than those of non spotted leaves. It could be suggested that scavenging system against reactive oxygen species induced by either stresses or innate metabolisms may not work properly in the rice LMMs. As these rice LMMs autonomously expressed clear lesions of lrd phenotype without pathogen infection, it could be useful to understand stresses responses in plants.

Keywords

References

  1. Anderson, M. D., Prasad, T. K. and Stewart, C. R. 1995. Changes in isozyme profiles of catalase, peroxidase, and glutathione reductase during acclimation to chilling in mesocotyls of maize seedlings. Plant Physiol. 109:1247-1257. https://doi.org/10.1104/pp.109.4.1247
  2. Balague, C., Lin, B., Alcon, C., Flottes, G., Malmstrom, S., Kohler, C., Neuhaus, G., Pelletier, G., Gaymard, F. and Roby, D. 2003. HLM1, an essential signaling component in the hypersensitive response, is a member of the cyclic nucleotidegated channel ion channel family. Plant Cell 15:365-379. https://doi.org/10.1105/tpc.006999
  3. Bouchez, O., Huard, C., Lorrain, S., Roby, D. and Balague, C. 2007. Ethylene is one of the key elements for cell death and defense response control in the Arabidopsis lesion mimic mutant vad1. Plant Physiol. 145:465-477. https://doi.org/10.1104/pp.107.106302
  4. Brennan, T. and Frenkel, C. 1977. Involvement of hydrogen peroxide in the regulation of senescence in pear. Plant Physiol. 59:411-416. https://doi.org/10.1104/pp.59.3.411
  5. Bulleid, N. J. 1993. Protein disulfide isomerase: role in biosynthesis of secretory proteins. Adv. Protein Chem. 44:125-150. https://doi.org/10.1016/S0065-3233(08)60566-5
  6. Buschges, R., Hollricher, K., Panstruga, R., Simons, G., Wolter, M., Frijters, A., van Daelen, R., van der Lee, T., Diergaarde, P., Groenendijk, J., Topsch, S., Vos, P., Salamini, F. and Schulze-Lefert, P. 1997. The barley Mlo gene: a novel control element of plant pathogen resistance. Cell 7:695-705.
  7. Chory, J., Peto, C. A., Ashbaugh, M., Saganich, R., Pratt, L. and Ausubel, F. 1989. Different roles for phytochrome in etiolated and green plants deduced from characterization of Arabidopsis thaliana mutants. Plant Cell 1:867-880. https://doi.org/10.1105/tpc.1.9.867
  8. Davis, M. S., Forman, A. and Fajer, J. 1979. Ligated chlorophyll cation radicals: their function in photosystem II of plant photosynthesis. Proc. Natl. Acad. Sci. USA 76:4170-4174. https://doi.org/10.1073/pnas.76.9.4170
  9. Dietrich, R. A., Delaney, T. P., Uknes, S. J., Ward, E. R., Ryals, J. A. and Dangl, J. L. 1994. Arabidopsis mutants simulating disease resistance response. Cell 77:565-577. https://doi.org/10.1016/0092-8674(94)90218-6
  10. Gray, J., Close, P. S., Briggs, S. P. and Johal, G. S. 1997. A novel suppressor of cell death in plants encoded by the Lls1 gene of maize. Cell 89:25-31. https://doi.org/10.1016/S0092-8674(00)80179-8
  11. Gray, J., Janick-Buckner, D., Buckner, B., Close, P. S. and Johal, G. S. 2002. Light-dependent death of maize lls1 cells is mediated by mature chloroplasts. Plant Physiol. 130:1894-1907. https://doi.org/10.1104/pp.008441
  12. Greenberg, J. T. 1996. Programmed cell death: A way of life for plants. Proc. Natl. Acad. Sci. USA 93:12094-12097. https://doi.org/10.1073/pnas.93.22.12094
  13. Greenberg, J. T. and Ausubel, F. M. 1993. Arabidopsis mutants compromised for the control of cellular damage during pathogenesis and aging. Plant J. 4:327-341. https://doi.org/10.1046/j.1365-313X.1993.04020327.x
  14. Guo, B., Liang, Y. and Zhu, Y. 2009. Does salicylic acid regulate antioxidant defense system, cell death, cadmium uptake and partitioning to acquire cadmium tolerance in rice?. J. Plant Physiol. 166:20-31. https://doi.org/10.1016/j.jplph.2008.01.002
  15. Hiraga, S., Sasaki, K., Ito, H., Ohashi, Y. and Matsui, H. 2001. A large family of class III plant peroxidases. Plant Cell Physiol. 42:462-468. https://doi.org/10.1093/pcp/pce061
  16. Hoisington, D. A., Neuffer, M. G. and Walbot, V. 1982. Disease lesion mimics in maize. 1. Effect of genetic background, temperature, developmental age, and wounding on necrotic spot formation with Les1. Dev. Biol. 93:381-388. https://doi.org/10.1016/0012-1606(82)90125-7
  17. Hu, G., Yalpani, N., Briggs, S. P. and Johal, G. S. 1998. A porphyrin pathway impairment is responsible for the phenotype of a dominant disease lesion mimic mutant of maize. Plant Cell 10:1095-1105. https://doi.org/10.1105/tpc.10.7.1095
  18. Jabs, T., Dietrich, R. A. and Dangl, J. L. 1996. Initiation of runway cell death in an Arabidopsis mutant by extra cellular superoxide. Science 273:1853-1856. https://doi.org/10.1126/science.273.5283.1853
  19. Jambunathan, N., Siani, J. M. and McNellis, T. W. 2001. A humidity-sensitive Arabidopsis copine mutant exhibits precocious cell death and increased disease resistance. Plant Cell 13:2225-2240. https://doi.org/10.1105/tpc.13.10.2225
  20. Kang, S. G., Jeong, H. K. and Suh, H. S. 2004. Characterization of a new member of the glutathione peroxidase gene family in Oryza sativa. Mol. Cells 17:23-28.
  21. Kang, S. G., Matin, M. N., Bae, H. H. and Natarajan, S. 2007. Proteome analysis and characterization of phenotypes of lesion mimic mutant spotted leaf 6 in rice. Proteomics 7:2447-2458. https://doi.org/10.1002/pmic.200600961
  22. Lee, E. T., Koo, B. J., Jung, J. H., Chang, M. U. and Kang, S. G. 2007. Detection of allexiviruses in the garlic plants in Korea. Plant Pathol. J. 23:266-271. https://doi.org/10.5423/PPJ.2007.23.4.266
  23. Liu, G., Wang, L., Zhou, Z., Leung, H., Wang, G. L. and He, C. 2004. Physical mapping of a rice lesion mimic gene, Spl1, to a 70-kb segment of rice chromosome 12. Mol. Genet. Genomics 272:108-115.
  24. Lorrain, S., Vailleau, F., Balague, C. and Roby, D. 2003. Lesion mimic mutants: keys for deciphering cell death and defense pathways in plants?. Trends Plant Sci. 8:263-271. https://doi.org/10.1016/S1360-1385(03)00108-0
  25. Mackinney, G. 1941. Absorption of light by chlorophyll solutions. J. Biol. Chem. 140:315-322.
  26. Macnevin, W. M. and Uron, P. F. 1953. Separation of hydrogen peroxide from organic hydroperoxides. Anal. Chem. 25:1760-1761. https://doi.org/10.1021/ac60083a052
  27. Matin, M. N., Suh, H. S. and Kang, S. G. 2006. Characterization of phenotypes of rice lesion resembling disease mutants. Korean J. Genet. 28:221-228.
  28. Mittler, R., Vanderauwera, S., Gollery, M. and Van Breusegem, F. 2004. Reactive oxygen gene network of plants. Trends Plant Sci. 9:490-496. https://doi.org/10.1016/j.tplants.2004.08.009
  29. Mizobuchi, R., Hirabayashi, H., Kaji, R., Nishizawa, Y., Yoshimura, A., Satoh, H., Ogawa, T. and Okamoto, M. 2002. Isolation and characterization of rice lesion-mimic mutants with enhanced resistance to rice blast and bacterial blight. Plant Sci. 163:345-353. https://doi.org/10.1016/S0168-9452(02)00134-6
  30. Mori, M., Tomita, C., Sugimoto, K., Hasegawa, M., Hayashi, N., Dubouzet, J. G., Ochiai, H., Sekimoto, H., Hirochika, H. and Kikuchi, S. 2007. Isolation and molecular characterization of a Spotted leaf 18 mutant by modified activation-tagging in rice. Plant Mol. Biol. 63:847-860. https://doi.org/10.1007/s11103-006-9130-y
  31. Noutoshi, Y., Kuromori, T., Wada, T., Hirayama, T., Kamiya, A., Imura, Y., Yasuda, M., Nakashita, H., Shirasu, K. and Shinozaki, K. 2006. Loss of necrotic spotted lesions 1 associates with cell death and defense responses in Arabidopsis thaliana. Plant Mol. Biol. 62:29-42. https://doi.org/10.1007/s11103-006-9001-6
  32. Puig, A. and Gilbert, H. F. 1994. Protein disulfide isomerase exhibits chaperone and anti-chaperone activity in the oxidative refolding of lysozyme. J. Biol. Chem. 269:7764-7771.
  33. Rostoks, N., Schmierer, D., Mudie, S., Drader, T., Brueggeman, R., Caldwell, D. G., Waugh, R. and Kleinhofs, A. 2006. Barley necrotic locus nec1 encodes the cyclic nucleotide-gated ion channel 4 homologous to the Arabidopsis HLM1. Mol. Genet. Genomics 275:159-168. https://doi.org/10.1007/s00438-005-0073-9
  34. Schroder, E. and Pointing, C. P. 1998. Evidence that peroxiredoxins are novel members of the thioredoxin fold superfamily. Protein Sci. 7:2465-2468. https://doi.org/10.1002/pro.5560071125
  35. Simmons, C., Hantke, S., Grant, S., Johal, G. S. and Briggs, S. P. 1998. The maize lethal leaf spot 1 mutant has elevated resistant to fungal infection at the leaf epidermis. Mol. Plant Microbe Interact. 11:1110-1118. https://doi.org/10.1094/MPMI.1998.11.11.1110
  36. Sugie, A., Murai, K. and Takumi, S. 2007. Alteration of respiration capacity and transcript accumulation level of alternative oxidase genes in necrosis lines of common wheat. Genes Genet. Syst. 82:231-239. https://doi.org/10.1266/ggs.82.231
  37. Takahashi, A., Kawasaki, T., Henmi, K., Shii, K., Kodama, O., Satoh, H. and Shimamoto, K. 1999. Lesion mimic mutants of rice with alterations in early signaling events of defense. Plant J. 17:535-545. https://doi.org/10.1046/j.1365-313X.1999.00405.x
  38. Wang, F., Wang, G., Li, X., Huang, J. and Zheng, J. 2008. Heredity, physiology and mapping of a chlorophyll content gene of rice (Oryza sativa L.). J. Plant Physiol. 165:324-330. https://doi.org/10.1016/j.jplph.2006.11.006
  39. Wolter, M., Hollricher, K., Salamini, F. and Schulze-Lefert, P. 1993. The mlo resistance alleles to powdery mildew infection in barley trigger a developmentally controlled defense mimic phenotype. Mol. Gen. Genet. 239:122-128.
  40. Wu, C., Bordeos, A., Madamba, M. R., Baraoidan, M., Ramos, M., Wang, G. L., Leach, J. E. and Leung, H. 2008. Rice lesion mimic mutants with enhanced resistance to diseases. Mol. Genet. Genomics 279:605-619. https://doi.org/10.1007/s00438-008-0337-2
  41. Yamanouchi, U., Yano, M., Lin, H., Ashikari, M. and Yamada, K. 2002. A rice spotted leaf gene, Spl7, encodes a heat stress transcription factor protein. Proc. Natl. Acad. Sci. USA 99:7530-7535. https://doi.org/10.1073/pnas.112209199
  42. Yao, Q., Zhou, R., Fu, T., Wu, W., Zhu, Z., Li, A. and Jia, J. 2009. Characterization and mapping of complementary lesionmimic genes lm1 and lm2 in common wheat. Theor. Appl. Genet. 119:1005-1012. https://doi.org/10.1007/s00122-009-1104-4
  43. Yin, Z., Chen, J., Zeng, L., Goh, M., Leung, H., Khush, G. S. and Wang, G. L. 2000. Characterizing rice lesion mimic mutants and identifying a mutant with broad-spectrum resistance to rice blast and bacterial blight. Mol. Plant Microbe Interact. 13:869-876. https://doi.org/10.1094/MPMI.2000.13.8.869
  44. Zeng, L. R., Qu, S., Bordeos, A., Yang, C., Baraoidan, M., Yan, H. and Xie, Q. 2004. Spotted leaf11, a negative regulator of plant cell death and defense, encodes a U-Box/Armadillo repeat protein endowed with E3 ubiquitin ligase activity. Plant Cell 16:2795-2808. https://doi.org/10.1105/tpc.104.025171

Cited by

  1. RLIN1, encoding a putative coproporphyrinogen III oxidase, is involved in lesion initiation in rice vol.38, pp.1, 2011, https://doi.org/10.1016/j.jcg.2010.12.001
  2. The pepper extracellular peroxidase CaPO2 is required for salt, drought and oxidative stress tolerance as well as resistance to fungal pathogens vol.235, pp.6, 2012, https://doi.org/10.1007/s00425-011-1580-z
  3. Mutagenic effects of heavy ion irradiation on rice seeds vol.290, 2012, https://doi.org/10.1016/j.nimb.2012.08.028
  4. Comparative phenotypic and physiological characteristics of spotted Leaf 6 (spl6) and brown leaf Spot2 (bl2) Lesion Mimic Mutants (LMM) in rice vol.30, pp.6, 2010, https://doi.org/10.1007/s10059-010-0151-7
  5. Identification and Genetic Mapping of a Lesion Mimic Mutant in Rice vol.19, pp.1, 2012, https://doi.org/10.1016/S1672-6308(12)60013-4
  6. The rice (Oryza sativa L.) LESION MIMIC RESEMBLING, which encodes an AAA-type ATPase, is implicated in defense response vol.290, pp.2, 2015, https://doi.org/10.1007/s00438-014-0944-z
  7. Association of lesion mimic trait with spot blotch resistance in wheat vol.41, pp.6, 2016, https://doi.org/10.1007/s40858-016-0115-3
  8. A Novel Peroxidase CanPOD Gene of Pepper Is Involved in Defense Responses to Phytophtora capsici Infection as well as Abiotic Stress Tolerance vol.14, pp.2, 2013, https://doi.org/10.3390/ijms14023158
  9. Characterization and mapping of a spotted leaf mutant in rice (Oryza sativa) vol.37, pp.2, 2014, https://doi.org/10.1590/S1415-47572014005000001