• Title/Summary/Keyword: bacterial inhibition

Search Result 646, Processing Time 0.029 seconds

Ginseng Intestinal Bacterial Metabolite IH901 as a New Anti-Metastatic Agent

  • Hideo Hasegawa;Sung, Jong-Hwan;Huh, Jae-Doo
    • Archives of Pharmacal Research
    • /
    • v.20 no.6
    • /
    • pp.539-544
    • /
    • 1997
  • Anti-metastatic activities of IH901, an intestinal bacterial metabolic derivative formed from Ginseng protopanaxadiol saponins, was determined in vitro and in vivo. Under in vitro conditions, IH901 inhibited the migration of bovine aortic endothelial cells 25 times stronger than suramin and suppressed the invasion of HT1080 human fibrosarcoma cells into reconstituted basement membrane components of Matrigel 1000 times stronger than RGDS peptide. IH901 also showed inhibitory effect on type-IV collagenase secretion from HT 1080 cells and platelet aggregation. When the anti-metastatic activity of IH901 was evaluated in comparison with that of 5-FU using a spontaneous lung metastatic model of Lewis lung carcinoma, the administration of IH901 (10 mg/kg p. o.) to tumor-bearing mice led to a significant decrease in lung metastasis (43% of untreated control), which was slightly more effective than that obtained with 5-FU (56% of control). Thus, IH901 seems to exhibit its anti-metastatic activity partly through the inhibition of tumor invasion which results from the blockade of type IV collagenase secretion and also through anti-platelet and anti-angiogenic activities.

  • PDF

Effect of Ammonia Load on Microbial Communities in Mesophilic Anaerobic Digestion of Propionic Acid (암모니아 부하에 따른 프로피온산 중온 혐기성 소화 미생물 군집 변동 조사)

  • Trang, Le Thi Nhu;Lee, Joonyeob
    • Journal of Environmental Science International
    • /
    • v.30 no.12
    • /
    • pp.1093-1100
    • /
    • 2021
  • The present study investigated the effect of ammonia load on microbial communities in mesophilic anaerobic digestion of propionic acid. A laboratory-scale continuous anaerobic digester treating propionic acid as a sole organic substrate was operated under non-inhibitory condition and inhibitory conditions with ammonia (1.5 g and 3.5 g ammonia-N/L, respectively), and bacterial and archaeal communities in the steady states of each ammonia condition were analyzed using high-throughput sequencing. Thirteen bacterial families were detected as abundant bacterial groups in mesophilic anaerobic digestion of propionic acid. Increase in ammonia concentration resulted in significant shifts in microbial community structures. Syntorophobacter, Pelotomaculum, and Thermovigra were determined as the dominant groups of (potential) propionate oxidizing bacteria in the non-inhibitory condition, whereas Cryptanaerobacter and Aminobacterium were the dominant groups of (potential) propionate oxidizing bacteria in the ammonia-inhibitory condition. Methanoculleus and Methanosaeta were the dominant methanogens. Acetate-oxidation coupled with hydrogenotrophic methanogenesis might be enhanced with increases in the relative abundances of Methanoculleus and Tepidanaerobacter acetatoxydans under the ammonia-inhibitory condition. The results of the present study could be a valuable reference for microbial management of anaerobic digestion systems that are exposed to ammonia inhibition and propionic acid accumulation.

High-dose lipopolysaccharide induced autophagic cell death in bovine mammary alveolar cells

  • Park, Jin-Ki;Yeo, Joon Mo;Cho, Kwanghyun;Park, Hyun-Jung;Lee, Won-Young
    • Journal of Animal Reproduction and Biotechnology
    • /
    • v.37 no.3
    • /
    • pp.169-175
    • /
    • 2022
  • Bovine mammary epithelial (MAC-T) cells are commonly used to study mammary gland development and mastitis. Lipopolysaccharide is a major bacterial cell membrane component that can induce inflammation. Autophagy is an important regulatory mechanism participating in the elimination of invading pathogens. In this study, we evaluated the mechanism underlying bacterial mastitis and mammary cell death following lipopolysaccharide treatment. After 24 h of 50 ㎍/mL lipopolysaccharide treatment, a significant decrease in the proliferation rate of MAC-T cells was observed. However, no changes were observed upon treatment of MAC-T cells with 10 ㎍/mL of lipopolysaccharide for up to 48 h. Thus, upon lipopolysaccharide treatment, MAC-T cells exhibit dose-dependent effects of growth inhibition at 10 ㎍/mL and death at 50 ㎍/mL. Treatment of MAC-T cells with 50 ㎍/mL lipopolysaccharide also induced the expression of autophagy-related genes ATG3, ATG5, ATG10, ATG12, MAP1LC3B, GABARAP-L2, and BECN1. The autophagy-related LC3A/B protein was also expressed in a dose-dependent manner upon lipopolysaccharide treatment. Based on these results, we suggest that a high dose of bacterial infection induces mammary epithelial cell death related to autophagy signals.

Bacterial Growth Modulatory Effects of Two Branched-Chain Hydroxy Acids and Their Production Level by Gut Microbiota

  • Chan Hyuk Hwang;Su-Hyun Kim;Choong Hwan Lee
    • Journal of Microbiology and Biotechnology
    • /
    • v.34 no.6
    • /
    • pp.1314-1321
    • /
    • 2024
  • Branched-chain hydroxy acids (BCHAs), produced by lactic acid bacteria, have recently been suggested as bioactive compounds contributing to the systemic metabolism and modulation of the gut microbiome. However, the relationship between BCHAs and gut microbiome remains unclear. In this study, we investigated the effects of BCHAs on the growth of seven different families in the gut microbiota. Based on in vitro screening, both 2-hydroxyisovaleric acid (HIVA) and 2-hydroxyisocaproic acid (HICA) stimulated the growth of Lactobacillaceae and Bifidobacteriaceae, with HIVA showing a significant growth promotion. Additionally, we observed not only the growth promotion of probiotic Lactobacillaceae strains but also growth inhibition of pathogenic B. fragilis in a dose-dependent manner. The production of HIVA and HICA varied depending on the family of the gut microbiota and was relatively high in case of Lactobacillaceae and Lachnosporaceae. Furthermore, HIVA and HICA production by each strain positively correlated with their growth variation. These results demonstrated gut microbiota-derived BCHAs as active metabolites that have bacterial growth modulatory effects. We suggest that BCHAs can be utilized as active metabolites, potentially contributing to the treatment of diseases associated with gut dysbiosis.

Genotoxicity Study of Sophoricoside, a Constituent of Sophora japonica, in Bacterial and Mammalian Cell System

  • Kim, Youn-Jung;Park, Hyo-Joung;Kim, Young-Soo;Kim, Mi-Kyung;Lee, Seung-Ho;Jung, Sang-Hun;Ryu, Jae-Chun
    • Environmental Mutagens and Carcinogens
    • /
    • v.21 no.2
    • /
    • pp.99-105
    • /
    • 2001
  • Sophoricoside was isolated as the inhibitor of IL-5 bioactivity from Sophora japonica (Leguminosae). It has been reported to has an anti-inflammatory effect on rat paw edema model. To develope as an anti-allergic drug, genotoxicity of sophoricoside was investigated in bacterial and mammalian cell system such as Ames bacterial reversion test, chromosomal aberration assay and single cell gel electrophoresis (Comet) assay. As results, in the range of 1,250~40 $\mu\textrm{g}$/plate sophoricoside concentrations was not shown significant mutagenic effects in Salmonella typhimurium TA 98, TA 100, TA 1535 and TA 1537 strains in Ames test. The 80% cell growth inhibition concentration (IC/SUB 80/) of sophoricoside was determined as above 5,000 $\mu\textrm{g}$/$m\ell$ in Chinese hamster lung (CHL) fibroblast cell and L5178Y mouse lymphoma cell line for the chromosomal aberration and comet assay, respectively. Sophoricoside was not induced chromosomal aberration in CHL fibroblast cell at concentrations of 700, 350 and 175 $\mu\textrm{g}$/$m\ell$ or 600, 300 and 150 $\mu\textrm{g}$/$m\ell$ in the absence or presence of S-9 metabolic activation system, respectively. Also, in the comet assay, the induction of DNA damage was not observed in L5178Y mouse lymphoma cell line both in the absence or presence of S-9 metabolic activation system. From these results, no genotoxic effects of sophoricoside were observed in bacterial and mammalian cell systems used in these experiments.

  • PDF

In Vitro Antagonistic Effects of Bacilli Isolates against Four Soilborne Plant Pathogenic Fungi

  • Kim, Wan-Gyu;Weon, Hang-Yeon;Lee, Sang-Yeob
    • The Plant Pathology Journal
    • /
    • v.24 no.1
    • /
    • pp.52-57
    • /
    • 2008
  • Twenty isolates of Bacillus spp. obtained from livestock manure composts and cotton-waste composts were tested for in vitro antagonistic effects against soilborne plant pathogenic fungi, Fusarium oxysporum, Phytophthora capsici, Rhizoctonia solani AG-4, and Sclerotinia sclerotiorum. Seven isolates of Bacillus spp. had antagonistic effects on mycelial growth of all the isolates of F. oxysporum tested. The bacterial isolate RM43 was the most effective to inhibit the mycelial growth of the fungal isolates. Twelve isolates of Bacillus spp. had antagonistic effects on mycelial growth of all the isolates of P. capsici tested. The bacterial isolates M34 and M47 were very effective to inhibit the mycelial growth of the fungal isolates. Thirteen isolates of Bacillus spp. had antagonistic effects on mycelial growth of all the isolates of R. solani AG-4 tested. The bacterial isolates M27 and M75 were very effective to inhibit the mycelial growth of the fungal isolates. Fourteen isolates of Bacillus sp. had antagonistic effects on mycelial growth of all the isolates of S. sclerotiorum tested. The bacterial isolates M49 and M75 were very effective to inhibit the mycelial growth of the fungal isolates. The antagonistic effects of most Bacillus spp. isolates against the isolates of the four fungi differed depending on the fungal species and the isolates of each fungus. The bacterial isolates M27 and M75 were the most effective to inhibit the mycelial growth of all four fungi.

Suppression of Fusarium Wilt Caused by Fusarium oxysporum f. sp. lactucae and Growth Promotion on Lettuce Using Bacterial Isolates

  • Yadav, Dil Raj;Adhikari, Mahesh;Kim, Sang Woo;Kim, Hyun Seung;Lee, Youn Su
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.9
    • /
    • pp.1241-1255
    • /
    • 2021
  • This study was carried out to explore a non-chemical strategy for enhancing productivity by employing some antagonistic rhizobacteria. One hundred eighteen bacterial isolates were obtained from the rhizospheric zone of various crop fields of Gangwon-do, Korea, and screened for antifungal activity against Fusarium wilt (Fusarium oxysporum f. sp. lactucae) in lettuce crop under in vitro and in vivo conditions. In broth-based dual culture assay, fourteen bacterial isolates showed significant inhibition of mycelial growth of F. oxysporium f. sp. lactucae. All of the antagonistic isolates were further characterized for the antagonistic traits under in vitro conditions. The isolates were identified on the basis of biochemical characteristics and confirmed at their species level by 16S rRNA gene sequencing analysis. Arthrobacter sulfonivorans, Bacillus siamensis, Bacillus amyloliquefaciens, Pseudomonas proteolytica, four Paenibacillus peoriae strains, and Bacillus subtilis were identified from the biochemical characterization and 16S rRNA gene sequencing analysis. The isolates EN21 and EN23 showed significant decrease in disease severity on lettuce compared to infected control and other bacterial treatments under greenhouse conditions. Two bacterial isolates, EN4 and EN21, were evaluated to assess their disease reduction and growth promotion in lettuce in field conditions. The consortium of EN4 and EN21 showed significant enhancement of growth on lettuce by suppressing disease caused by F. oxysporum f. sp. lactucae respectively. This study clearly indicates that the promising isolates, EN4 (P. proteolytica) and EN21 (Bacillus siamensis), can be commercialized and used as biofertilizer and/or biopesticide for sustainable crop production.

POTENT INHIBITION OF HUMAN CYTOCHROME P450 1 ENZYMES BY DIMETHOXYPHENYL VINYL THIOPHENE

  • Lee, Sang-Kwang;Kim, Sang-Hee;Kim, Mie-Young;Chun, Young-Jin
    • Proceedings of the PSK Conference
    • /
    • 2002.10a
    • /
    • pp.312.3-313
    • /
    • 2002
  • Recently we have reported that various hydroxystilbenes show strong inhibition of human P450 1 activity. A series of synthetic trans-stilbene derivatives were prepared and their inhibitory potentials were evaluated with the bacterial membrane of recombinant human P450 1A1, 1A2 or 1B1 coexpressed with human NADPH-P450 reductase to find new candidates for cancer chemoprevention, Of the compounds tested. SY-021 (3.5-dimethoxyphenyl vinyl thiophene) exhibited a potent inhibition of human P450 181 with an IC$_{50}$ value of 2 nM. SY-021 also showed the inhibitrion of P450 1A1 with IC$_{50}$ value of 61 nM and P450 1A2 with IC$_{50}$ value of 11 nM. SY-021 showed 31-fold selectivity for P450 1B1 over P450 1A1 and 6-fold selectivity for P450 1B1 over 1A2. We have further investigated the inhibition kinetics of P450 1A1. 1A2 and 1B1 by SY-021. The modes of inhibition by SY-021were non-compeitive for all three P450 1 enzymes. Effect of preincubation with NADPH on inhibition of P450 1B1 by SY-021 was determined. These results suggest that SY-021 is one of the mostj potent inhibitor of human P450 1 enzymes and may be considered as a good candidate for a cancer chemopreventive agent in human

  • PDF

Antibacterial Properties of Pit and Fissure Sealant Containing S-PRG filler on Streptococcus mutans (S-PRG filler를 포함한 치면열구전색제의 Streptococcus mutans에 대한 항미생물 특성에 관한 연구)

  • An, Jinseon;Park, Howon;Seo, Hyunwoo;Lee, Siyoung
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.42 no.4
    • /
    • pp.302-311
    • /
    • 2015
  • The purpose of this study was to evaluate the antibacterial properties of a sealant containing S-PRG filler compared to those of two contemporary commercial sealants to determine the inhibition of bacterial growth in broth culture and biofilm formation using the CDC Biofilm Reactor. The BeautiSealant containing S-PRG filler, the fluoride releasing Clinpro$^{TM}$ sealant, which are known to have higher antibacterial effects, and the non-fluoride releasing Concise$^{TM}$ sealant were selected for this study. A Streptococcus mutans culture in BHI broth without sealant served as a negative control in the planktonic growth inhibition test. As a result, bacterial growth was inhibited in all three sealant groups compared to that in the control. The Clinpro$^{TM}$ sealant showed a significantly reduced number of CFUs compared to those of the BeautiSealant and Concise$^{TM}$ sealants. However, no significant difference was detected between the BeautiSealant and Concise$^{TM}$ sealants. The Clinpro$^{TM}$ sealant significantly decreased biofilm formation compared to that by the BeautiSealant and Concise$^{TM}$ sealants. No significant difference was observed between the BeautiSealant and Concise$^{TM}$ sealants. In conclusion, the sealant containing S-PRG filler had a less potent anti-bacterial property and increased biofilm formation capacity compared to those of the fluoride releasing Clinpro$^{TM}$ sealant.

Proton Effect on the Degradation of Phenolic Compound by Activated Sludge and Nocardia asteroides (활성슬러지 혼합미생물과 Nocardia asteroides에 의한 페놀화합물 분해시 양성자이온의 영향)

  • 조관형;조영태;우달식
    • Journal of Environmental Science International
    • /
    • v.11 no.6
    • /
    • pp.561-567
    • /
    • 2002
  • This study was investigated to evaluate the effect of the sodium ion and pH on toxicity of dinitrophenol at high concentrations (0.41 to 0.54 mM), over a sodium concentration range of 0.1 mM to 107 mM and over a pH range of 5 to 9. The concentration of sodium ions in the activated sludge mixed liquor seemed to have very little effect on dinitrophenol toxicity. However, lack of sodium in the growth media resulted in a reduction of the dinitrophenol degradation rate by bacterial isolate from the activated sludge culture, which has been identified as Nocardia asteroides. Dinitrophenol inhibition was found to be strongly dependent on mixed liquor pH. The dinitrophenol degradation rate was highest in the pH range of 6.95 to 7.84; at pH 5.94 degradation of 75 mg/L dinitrophenol was significantly inhibited; at pH < 5.77, dinitrophenol degradation was completely inhibited after approximately 30% of the dinitrophenol was degraded.