DOI QR코드

DOI QR Code

Suppression of Fusarium Wilt Caused by Fusarium oxysporum f. sp. lactucae and Growth Promotion on Lettuce Using Bacterial Isolates

  • Yadav, Dil Raj (Department of Applied Plant Sciences, Interdisciplinary Program in Smart Agriculture, Kangwon National University) ;
  • Adhikari, Mahesh (Department of Applied Plant Sciences, Interdisciplinary Program in Smart Agriculture, Kangwon National University) ;
  • Kim, Sang Woo (Department of Applied Plant Sciences, Interdisciplinary Program in Smart Agriculture, Kangwon National University) ;
  • Kim, Hyun Seung (Department of Applied Plant Sciences, Interdisciplinary Program in Smart Agriculture, Kangwon National University) ;
  • Lee, Youn Su (Department of Applied Plant Sciences, Interdisciplinary Program in Smart Agriculture, Kangwon National University)
  • Received : 2021.04.20
  • Accepted : 2021.08.02
  • Published : 2021.09.28

Abstract

This study was carried out to explore a non-chemical strategy for enhancing productivity by employing some antagonistic rhizobacteria. One hundred eighteen bacterial isolates were obtained from the rhizospheric zone of various crop fields of Gangwon-do, Korea, and screened for antifungal activity against Fusarium wilt (Fusarium oxysporum f. sp. lactucae) in lettuce crop under in vitro and in vivo conditions. In broth-based dual culture assay, fourteen bacterial isolates showed significant inhibition of mycelial growth of F. oxysporium f. sp. lactucae. All of the antagonistic isolates were further characterized for the antagonistic traits under in vitro conditions. The isolates were identified on the basis of biochemical characteristics and confirmed at their species level by 16S rRNA gene sequencing analysis. Arthrobacter sulfonivorans, Bacillus siamensis, Bacillus amyloliquefaciens, Pseudomonas proteolytica, four Paenibacillus peoriae strains, and Bacillus subtilis were identified from the biochemical characterization and 16S rRNA gene sequencing analysis. The isolates EN21 and EN23 showed significant decrease in disease severity on lettuce compared to infected control and other bacterial treatments under greenhouse conditions. Two bacterial isolates, EN4 and EN21, were evaluated to assess their disease reduction and growth promotion in lettuce in field conditions. The consortium of EN4 and EN21 showed significant enhancement of growth on lettuce by suppressing disease caused by F. oxysporum f. sp. lactucae respectively. This study clearly indicates that the promising isolates, EN4 (P. proteolytica) and EN21 (Bacillus siamensis), can be commercialized and used as biofertilizer and/or biopesticide for sustainable crop production.

Keywords

Acknowledgement

This study was conducted with the support of a research grant from Kangwon National University.

References

  1. Bano N, Musarrat J. 2003. Characterization of a new Pseudomonas aeruginosa strain NJ-15 as a potential biocontrol agent. Curr. Microbiol. 46: 324-328. https://doi.org/10.1007/s00284-002-3857-8
  2. Nelson EB, Maloney AP. 1992. Molecular approaches for understanding biological control mechanisms in bacteria: studies of interaction of Enterobacter cloacae with Pythium ultimum. Can. J. Plant Pathol. 14:106-14. https://doi.org/10.1080/07060669209500911
  3. Armstrong, GM, Armstrong JK. 1981. Formae speciales and races of Fusarium. In: Nelson PE, Toussoun TA, Conk RJ, editors. pp. 391-399. Fusarium: diseases, biology and taxonomy. University Park: The Pennsylvania State University Press.
  4. Ulloa, M, Hanlin R. 1993. Plant disease control. In: Strange R, editor. Plant Disease Control: Towards Environmentally Acceptable Methods. pp. 448. 1st ed. New York: Chapman and Hall.
  5. Shanmugam V, Kanoujia N. 2011. Biological management of vascular wilt of tomato caused by Fusarium oxysporum f. sp. lycopersici by plant growth-promoting rhizobacterial mixture. Biol. Control. 57: 85-93. https://doi.org/10.1016/j.biocontrol.2011.02.001
  6. Cavender ND, Atiyeh RM, Knee M. 2003. Vermicompost stimulates mycorrhizal colonization of roots of Sorghum bicolor at the expense of plant growth. Pedobiologia (Jena) 47: 85-89. https://doi.org/10.1078/0031-4056-00172
  7. Jetiyanon K, Kloepper JW. 2002. Mixtures of plant growth-promoting rhizobacteria for induction of systemic resistance against multiple plant diseases. Biol. Control 24: 285-291. https://doi.org/10.1016/S1049-9644(02)00022-1
  8. Turnbull G a, Morgan JAW, Whipps JM, Saunders JR. 2001. The role of motility in the in vitro attachment of Pseudomonas putida PaW8 to wheat roots. FEMS Microbiol. Ecol. 35: 57-65. https://doi.org/10.1111/j.1574-6941.2001.tb00788.x
  9. Dubey RC, Maheshwari DK. 2005. Enhancement of collar rot in sunflower caused by Sclerotinia rolfsii by Pseuodomonas. Indian Phytopathol. 58: 17-24.
  10. Zaved HK, Rahman MM, Rahman MM, Rahman A, Arafat SMY, Rahman MS. 2008. Isolation and characterization of effective bacteria for solid waste degradation for organic manure. KMITL J. Sci. Tech. 8: 44-55.
  11. Whipps JM. 1997. Ecological considerations involved in commercial development of biological control agents for soil-borne diseases. Pp. 525-546. In: van Elsas JD, Trevors, JT Wellington EMH, editors. Modern soil microbiology. New York: Marcel Dekker.
  12. Arrebola E, Jacobs R, Korsten L. Iturin. 2010. A is the principal inhibitor in the biocontrol activity of Bacillus amyloliquefaciens PPCB004 against postharvest fungal pathogens. J. Appl. Microbiol. 108: 386-395. https://doi.org/10.1111/j.1365-2672.2009.04438.x
  13. An Y, Kang S, Kim KD, Hwang BK, Jeun Y. 2010. Enhanced defense responses of tomato plants against late blight pathogen Phytophthora infestans by pre-inoculation with rhizobacteria. Crop Prot. 29: 1406-1412. https://doi.org/10.1016/j.cropro.2010.07.023
  14. Junior VL, Maffia LA, Romeiro RS, Mizubuti ESG. 2006. Biocontrol of tomato late blight with the combination of epiphytic antagonists and rhizobacteria. Biol. Control. 38: 331-340. https://doi.org/10.1016/j.biocontrol.2006.04.005
  15. Akutsu K, Hirata A, Yamamoto M, Hirayae K, Okuyama S, Hibi T. 1993. Growth inhibition of Botrytis spp. by Serratia marcescens B2 isolated from tomato phylloplane. Ann. Phytopathol. Soc. Jpn. 59: 18-25. https://doi.org/10.3186/jjphytopath.59.18
  16. Sutton JC, Peng G. 1993. Biocontrol of Botrytis cinerea in strawberry leaves. Phytopathology 83: 615-621. https://doi.org/10.1094/Phyto-83-615
  17. Paul B. 1999. Suppression of Botrytis cinerea causing the grey mould disease of grape-vine by an aggressive mycoparasite, Pythium radiosum. FEMS Microbiol. Lett. 176: 25-30. https://doi.org/10.1016/S0378-1097(99)00213-X
  18. Harley JL, Waid JS. 1975. A method of studying active mycelia on living roots and other surfaces in the soils. Trans. Br. Mycol. Soc. 38: 104-118. https://doi.org/10.1016/s0007-1536(55)80022-8
  19. Bharathi R, Vivekananthan R, Harish S, Ramanathan A, Samiyappan R. 2004. Rhizobacteria based bio-formulations for the management of fruit rot infection in chillies. Crop Prot. 23: 835-843. https://doi.org/10.1016/j.cropro.2004.01.007
  20. Sheng JX, Kim BS. 2014. Biocontrol of fusarium crown and root rot and promotion of growth of tomato by Paenibacillus strains isolated from soil. Mycobiology 42: 158-166. https://doi.org/10.5941/MYCO.2014.42.2.158
  21. Perneel M, Heyrman J, Adiobo A, De Maeyer K, Raaijmakers JM, De Vos P, Hofte M. 2007. Characterization of CMR5c and CMR12a, novel fluorescent Pseudomonas strains from the cocoyam rhizosphere with biocontrol activity. J. Appl. Microbiol. 103: 1007-1020. https://doi.org/10.1111/j.1365-2672.2007.03345.x
  22. Trivedi P, Pandey A. 2007. Biological hardening of micropropagated Picrorhiza kurrooa Royel ex Benth., an endangered species of medical importance. World J. Microbiol. Biotechnol. 23: 877-878. https://doi.org/10.1007/s11274-006-9293-3
  23. Roberts WK, Selitrennikoff CP. 1988. Plant and bacterial chitinases differ in antifungal activity. J. Gen. Microbiol. 134: 169-176.
  24. Cappuccino JC, Sherman N. Microbiology: a laboratory manual. 6th ed. San Francisco: Pearson Education, Inc; 2006.
  25. Lorck H. 1948. Production of hydrocyanic acid by bacteria. Physiol. Plant. 1: 142-146. https://doi.org/10.1111/j.1399-3054.1948.tb07118.x
  26. Schwyn B, Neilands JB. 1987. Universal chemical assay for the detection and determination of siderophores. Anal. Biochem. 160: 47-56. https://doi.org/10.1016/0003-2697(87)90612-9
  27. Bric JM, Bostock RM, Silverstone SE. 1991. Rapid in situ assay for indole acetic acid production by bacteria immobilized on a nitrocellulose membrane. Appl. Environ. Microbiol. 57: 535-538. https://doi.org/10.1128/aem.57.2.535-538.1991
  28. Goswami D, Vaghela H, Parmar S, Dhandhukia P, Thakker JN. 2013. Plant growth promoting potentials of Pseudomonas spp. strain OG isolated from marine water. J. Plant Interact. 8: 281-290. https://doi.org/10.1080/17429145.2013.768360
  29. Weisburg WG, Barns SM, Pelletier DA, Lane DJ. 1991. 16S ribosomal DNA amplification for phylogenetic study. J. Bacteriol. 173: 697-703. https://doi.org/10.1128/jb.173.2.697-703.1991
  30. Reysenbach AL, Giver LJ, Wickham GS, Pace NR. 1992. Differential amplification of rRNA genes by polymerase chain reaction. Appl. Environ. Microbiol. 58: 3417-3418. https://doi.org/10.1128/aem.58.10.3417-3418.1992
  31. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. 2013. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol. 30: 2725-27299. https://doi.org/10.1093/molbev/mst197
  32. Oh BJ, Kim KD, Kim YS. 1999. Effect of cuticular wax layers of green and red pepper fruits on infection by Colletotrichum gloeosporioides. J. Phytopathol. 147: 547-552. https://doi.org/10.1046/j.1439-0434.1999.00407.x
  33. Guo JH, Qi HY, Guo YH, Ge HL, Gong LY, Zhang LX. 2004. Biocontrol of tomato wilt by plant growth-promoting rhizobacteria. Biol. Control 29: 66-72. https://doi.org/10.1016/S1049-9644(03)00124-5
  34. IRRI. CROPSTAT for Windows, version 7.2.3. 2007; Metro Manila, Philippines. Jeffries P, Gianinazzi S, Perotto S, Turnau K, Barea JM. 2003. The contribution of arbuscular mycorrhizal fungi in sustainable maintenance of plant health and soil fertility. Biol. Fertil Soils 37: 1-16. https://doi.org/10.1007/s00374-002-0546-5
  35. Atkinson A, Watson CA. 2000.The beneficial rhizosphere: a dynamic entity. Appl. Soil Ecol. 48: 99-104. https://doi.org/10.1016/S0929-1393(00)00084-6
  36. Garbeva P, van Veen JA, van Elsas JD. 2004. Microbial diversity in soil: selection of microbial populations by plant and soil type and implications for disease suppressiveness. Ann. Rev. Phytopathol. 42: 243-270. https://doi.org/10.1146/annurev.phyto.42.012604.135455
  37. Paulitz TC, Zhou T, Rankin L. 1992. Selection of rhizosphere bacteria for biological control of Pythium aphanidermatum on hydroponically grown cucumber. Biol. Control 2: 226-237. https://doi.org/10.1016/1049-9644(92)90063-J
  38. Bakthavatchalu V, Dey S, Xu Y, Noel T, Jungsuwadee P, Holley AK, et al. 2011. Manganese superoxide dismutase is a mitochondrial fidelity protein that protects Polγ against UV-induced inactivation. Oncogene 31: 2129-2139. https://doi.org/10.1038/onc.2011.407
  39. Landa, BB, Hervas A, Bethiol W, Jimenez-Diaz DR. 1997. Antagonistic activity of bacteria from the chickpea rhizosphere against Fusarium oxysporum f. sp. ciceris. Phytoparasitica 25: 305-318. https://doi.org/10.1007/BF02981094
  40. Saravanan T, Muthusami M, Marimuthu T. 2004. Effect of Pseudomonas fluorescens on fusarium wilt pathogen in banana rhizosphere. J. Biol. Sci. 4: 192-198. https://doi.org/10.3923/jbs.2004.192.198
  41. Ashwini N, Srividya S. 2014. Potentiality of Bacillus subtilis as biocontrol agent for management of anthracnose disease of chilli caused by Colletotrichum gloeosporioides OGC1. 3Biotech. 4: 127-136.
  42. Williams GE, Asher MJC. 1996. Selection of rhizobacteria for the control of Pythium ultimum and Aphanomyces cochlioides on sugar-beet seedlings. Crop Prot. 15: 479-486. https://doi.org/10.1016/0261-2194(96)00014-2
  43. Baker R. 1968. Mechanisms of biological control of soil-borne pathogens. Annu. Rev. Phytopathol. 6: 263-294. https://doi.org/10.1146/annurev.py.06.090168.001403
  44. Xu GW, Gross DC. 1986. Selection of fluorescent pseudomonads antagonistic to Erwinia carotovora and suppressive of potato seed piece decay. Phytopathology 76: 414-422. https://doi.org/10.1094/Phyto-76-414
  45. Majeed A, Abbasi MK, Hameed S, Imran A, Rahim N. 2015. Isolation and characterization of plant growth-promoting rhizobacteria from wheat rhizosphere and their effect on plant growth promotion. Front. Microbiol. 6: 198. https://doi.org/10.3389/fmicb.2015.00198
  46. Voisard C, Keel C, Haas D, Defago G. 1989. Cyanide production by Pseudomonas fluorescens helps suppress black root rot of tobacco under gnotobiotic conditions. EMBO J. 8: 351-358. https://doi.org/10.1002/j.1460-2075.1989.tb03384.x
  47. Bashan Y, De-Bashan LE. 2010. How the plant growth-promoting bacterium Azospirillum promotes plant growth-a critical assessment. Adv. Agron. 108: 77-136. https://doi.org/10.1016/S0065-2113(10)08002-8
  48. Muthamilan, M, Jeyyarajan R.1996. Integrated management of Sclerotium root rot of groundnut involving of Trichoderma harzianum, Rhizobium and Carbendazim. Indian J. Mycol. Plant Pathol. 26: 204-209.
  49. van Peer R, Niemann GJ, Schippers B. 1991. Induced resistance and phytoalexin accumulation in biological control of fusarium wilt of carnation by Pseudomonas sp. Strain WCS417r.PDF. Phytopathology 81: 728-734. https://doi.org/10.1094/Phyto-81-728
  50. Morrissey JP, Walsh UF, O'Donnell A, Moenne-Loccoz Y, O'Gara F. 2002. Exploitation of genetically modified inoculants for industrial ecology applications. Antonie Van Leeuwenhoek 81: 599-606. https://doi.org/10.1023/A:1020522025374