• Title/Summary/Keyword: bacterial cell growth

Search Result 416, Processing Time 0.031 seconds

Study on the Effect of Gamissanghwa-tang and each Medicinal Plant Extract for the Hair Growth of the Mice using In vivo and In vitro Test (In vivo와 In vitro 실험에서 가미쌍화탕 및 구성한약재가 마우스의 모발 성장에 미치는 실험적 연구)

  • Yun Jeong Hun;Kim Nam Kwen;Lim Kyu Sang;Roh Seok Seon;Hwang Chung Yeon
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.18 no.2
    • /
    • pp.561-570
    • /
    • 2004
  • To screen the effective materials for hair loss treatment, the Gamissanghwa-tang extracts were tested. As a result we found that the Gamissanghwa-tang extracts have the hair growth promoting effect. After topical application of each test materials to the back of CS7BL/6 mice, the earlier conversion of telogen-to-anagen phase was induced. In the experiments of 5α-reductase type II inhibition assay, Radix Paeoniae Alba, Semen Cuscutae showed effective potential to inhibit the activity of 5α-reductase type II. And hair growth index of the Gamissanghwa-tang extracts ranked as 1.2, especially the hair growth index of Fructus Rubi is highest as 1.8. But there were no plant extracts which have effect on the DNA proliferation of hair dermal papilla cell measured by [³H]thymidine incorporation, the expression of growth factors such as IGF-I, KGF, HGF estimated by RT-PCR and protein synthesis of vibrissae hair follicle measured by [/sup 35/S] cysteine incorporation. Cortex Cinnamomi showed anti-bacterial effect on P. ovale, Radix Paeoniae Alba has the highest radical scavening activity and Radix Glycyrrhizae has the highest effects of NO synthesis. These results suggest that Gamissanghwa-tang can be used as a potent treatment agent for helping hair growth stimulation.

Antagonistic Activity against Dirty Panicle Rice Fungal Pathogens and Plant Growth-Promoting Activity of Bacillus amyloliquefaciens BAS23

  • Saechow, Sukanya;Thammasittirong, Anon;Kittakoop, Prasat;Prachya, Surasak;Thammasittirong, Sutticha Na-Ranong
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.9
    • /
    • pp.1527-1535
    • /
    • 2018
  • Bacterial strain BAS23 was isolated from rice field soil and identified as Bacillus amyloliquefaciens. Based on dual culture method results, the bacterium BAS23 exhibited potent in vitro inhibitory activity on mycelial growth against a broad range of dirty panicle fungal pathogens of rice (Curvularia lunata, Fusarium semitectum and Helminthosporium oryzae). Cell-free culture of BAS23 displayed a significant effect on germ tube elongation and mycelial growth. The highest dry weight reduction (%) values of C. lunata, H. oryzae and F. semitectum were 92.7%, 75.7%, and 68.9%, respectively. Analysis of electrospray ionization-mass spectrometry (ESI-MS) and $^1H$ nuclear magnetic resonance (NMR) spectroscopy revealed that the lipopeptides were iturin A with a C14 side chain (C14 iturinic acid), and a C15 side chain (C15 iturinic acid), which were produced by BAS23 when it was cultured in nutrient broth (NB) for 72 h at $30^{\circ}C$. BAS23, the efficient antagonistic bacterium, also possessed in vitro multiple traits for plant growth promotion and improved rice seedling growth. The results indicated that BAS23 represents a useful option either for biocontrol or as a plant growth-promoting agent.

Isolation and Identification of Linear Alkylbenzene Sulfonate Degrading Bacteria (Linear Alkylbenzene Sulfonate 분해세균의 분리 및 동정)

  • Lee, Ki-Moo;Choi, Woo-Young
    • Korean Journal of Agricultural Science
    • /
    • v.21 no.1
    • /
    • pp.60-66
    • /
    • 1994
  • Among the various bacterial isolates from municipal sewages which utilized linear alkylbenzene sulfonate (LAS) as a sole source of carbon. 3 potent strains - KL-3, SH-2 and EN-1 - were selected. The strains were classified: KL-3 as a strain belong to the genus Klebsiella; SH-2 Shigella; and EN-1 Enterobacter, respectively. They were grown in a broth containing 200 ppm of LAS, using a laboratory scale fermentor: the bacterial growth reached stationary phase after 2 days with a maximum viability of $10^8cfu/mL$ of the culture; initial rates of LAS degradation were high during the first 24 hours of cultivation (KL-3 and SH-2, approx. 50%; EN-1, 20%); after 1 day a lag period of about 24 hours was observed for all the strains, and thereafter break-down proceeded rapidly; final rates after 7 days were approximately 85% by KL-3, 82% by SH-2 and 75% by EN-1. Adsorption of LAS by the bacterial cell mass was high for the strain SH-2, as Freundlich equation: Y= 0.030X + 0.95 was calculated.

  • PDF

Comparison of Bacterial Community Changes in Fermenting Kimchi at Two Different Temperatures Using a Denaturing Gradient Gel Electrophoresis Analysis

  • Yeun, Hong;Yang, Hee-Seok;Chang, Hae-Choon;Kim, Hae-Yeong
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.1
    • /
    • pp.76-84
    • /
    • 2013
  • A polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) technique followed by sequencing of the 16S rDNA fragments eluted from the bands of interest on denaturing gradient gels was used to monitor changes in the bacterial microflora of two commercial kimchi, salted cabbage, and ingredient mix samples during 30 days of fermentation at $4^{\circ}C$ and $10^{\circ}C$. Leuconostoc (Lc.) was the dominant lactic acid bacteria (LAB) over Lactobacillus (Lb.) species at $4^{\circ}C$. Weissella confusa was detected in the ingredient mix and also in kimchi samples throughout fermentation in both samples at $4^{\circ}C$ and $10^{\circ}C$. Lc. gelidum was detected as the dominant LAB at $4^{\circ}C$ in both samples. The temperature affected the LAB profile of kimchi by varing the pH, which was primarily caused by the temperature-dependent competition among different LAB species in kimchi. At $4^{\circ}C$, the sample variations in pH and titratable acidity were more conspicuous owing to the delayed growth of LAB. Temperature affected only initial decreases in pH and initial increases in viable cell counts, but affected both the initial increases and final values of titratable acidity. The initial microflora in the kimchi sample was probably determined by the microflora of the ingredient mix, not by that of the salted cabbage. The microbial distributions in the samples used in this study resembled across the different kimchi samples and the different fermentation temperatures as the numbers of LAB increased and titratable acidity decreased.

Effects of a tunnel ventilation system within the tie-stall barn environment upon the productivity of dairy cattle during the winter season

  • Sarentonglaga, Borjigin;Sugiyama, Tatsuhiro;Fukumori, Rika;Nagao, Yoshikazu
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.32 no.5
    • /
    • pp.748-756
    • /
    • 2019
  • Objective: The objective of this study was to examine the effect of using a tunnel ventilation system within the dairy barn environment upon the productivity of dairy cows during the winter season. Methods: The study was performed at the University Farm, Faculty of Agriculture, Utsunomiya University. Twenty-one Holstein dairy cows (5 heifers and 16 multiparous) were enclosed in a stall barn. Unventilated (UV) and tunnel-ventilated (TV) was operated by turns every other week, and a number of key parameters were measured in the barn, including tunnel ventilation output, temperature, relative humidity, gas concentrations (oxygen [$O_2$], carbon dioxide [$CO_2$], and ammonia [$NH_3$]). Also, skin and rectal temperature, respiratory rate, blood gas concentrations, and bacterial count were measured from nipple attachments on ten cows. The amount of fodder left uneaten, and general components and somatic cell count of the milk were measured. Results: As for our dairy barn environment, air temperature dropped significantly with the passage of time with TV. Humidity was significantly higher with TV at 0600 h compared to UV, while $CO_2$ and $NH_3$ concentrations with UV were significantly higher than with TV at 0000 h and 0600 h. Skin temperature was significantly lower with TV compared to UV at 0000 h and 0600 h. Respiratory rate was also significantly lower at 0600 h with TV than with UV. Bacterial count for the nipple attachments was significantly lower with TV than with UV at 0600 h. The amount of leftover fodder was significantly less with TV in comparison with UV. Conclusion: Our results suggest that a TV system in the winter barn results in environmental improvements, such as reductions in unfavorable gas concentrations and bacterial growth. Consequently, it is expected that barns utilizing a TV system will be beneficial for both animal health and production.

High Concentration of Red Clay as an Alternative for Antibiotics in Aquaculture

  • Jung, Jaejoon;Jee, Seung Cheol;Sung, Jung-Suk;Park, Woojun
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.1
    • /
    • pp.130-138
    • /
    • 2016
  • The use of antibiotics in aquaculture raises environmental and food safety concerns because chronic exposure of an aquatic ecosystem to antibiotics can result in the spread of antibiotic resistance, bioaccumulation of antibiotics in the organisms, and transfer of antibiotics to humans. In an attempt to overcome these problems, high-concentration red clay was applied as an alternative antibiotic against the following common fish pathogens: Aeromonas salmonicida, Vibrio alginolyticus, and Streptococcus equinus. The growth of A. salmonicida and V. alginolyticus was retarded by red clay, whereas that of S. equinus was promoted. Phase contrast and scanning electron microscopy analyses confirmed the attachment of red clay on cell surfaces, resulting in rapid gravitational removal and cell surface damage in both A. salmonicida and V. alginolyticus, but not in S. equinus. Different cell wall properties of grampositive species may explain the unharmed cell surface of S. equinus. Significant levels of oxidative stress were generated in only the former two species, whereas significant changes in membrane permeability were found only in S. equinus, probably because of its physiological adaptation. The bacterial communities in water samples from Oncorhynchus mykiss aquacultures supplemented with red clay showed similar structure and diversity as those from oxytetracycline-treated water. Taken together, the antibiotic effects of high concentrations of red clay in aquaculture can be attributed to gravitational removal, cell surface damage, and oxidative stress production, and suggest that red clay may be used as an alternative for antibiotics in aquaculture.

Bacterial Cell Surface Display of a Multifunctional Cellulolytic Enzyme Screened from a Bovine Rumen Metagenomic Resource

  • Ko, Kyong-Cheol;Lee, Binna;Cheong, Dae-Eun;Han, Yunjon;Choi, Jong Hyun;Song, Jae Jun
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.11
    • /
    • pp.1835-1841
    • /
    • 2015
  • A cell surface display system for heterologous expression of the multifunctional cellulase, CelEx-BR12, in Escherichia coli was developed using truncated E. coli outer membrane protein C (OmpC) as an anchor motif. Cell surface expression of CelEx-BR12 cellulase in E. coli harboring OmpC-fused CelEx-BR12, designated MC4100 (pTOCBR12), was confirmed by fluorescence-activated cell sorting and analysis of outer membrane fractions by western blotting, which verified the expected molecular mass of OmpC-fused CelEx-BR12 (~72 kDa). Functional evidence for exocellulase activity was provided by enzymatic assays of whole cells and outer membrane protein fractions from E. coli MC4100 (pTOCBR12). The stability of E. coli MC4100 (pTOCBR12) cellulase activity was tested by carrying out repeated reaction cycles, which demonstrated the reusability of recombinant cells. Finally, we showed that recombinant E. coli cells displaying the CelEx-BR12 enzyme on the cell surface were capable of growth using carboxymethyl cellulose as the sole carbon source.

Characterization of Growth-supporting Factors Produced by Geobacillus toebii for the Commensal Thermophile Symbiobacterium toebii

  • Kim, Joong-Jae;Masui, Ryoji;Kuramitsu, Seiki;Seo, Jin-Ho;Kim, Kwang;Sung, Moon-Hee
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.3
    • /
    • pp.490-496
    • /
    • 2008
  • Symbiobacterium toebii is a commensal symbiotic thermophile that cannot grow without support from a partner bacterium. We investigated the properties of Symbiobacterium growth-supporting factors (SGSFs) produced by the partner bacterium Geobacillus toebii. SGSFs occurred in both the cell-free extract (CFE) and culture supernatant of G. toebii and might comprise multifarious materials because of their different biological properties. The heavy SGSF contained in the cytosolic component exhibited heat- and proteinase-sensitive proteinaceous properties and had a molecular mass of >50 kDa. In contrast, the light SGSF contained in the extracellular component exhibited heat-stable, proteinase-resistant, nonprotein properties and had a molecular mass of <10 kDa. Under morphological examination using light microscopy, S. toebii cultured with the culture supernatant of G. toebii was filamentous, whereas S. toebii cultured with the CFE of G. toebii was rod-shaped. These results strongly suggest that the SGSFs produced by G. toebii comprise two or more types that differ in their growth-supporting mechanisms, although all support the growth of S. toebii. Upon the examination of the distribution of SGSFs in other bacteria, both cytosolic and extracellular components of Geobacillus kaustophilus, Escherichia coli, and Bacillus subtilis had detectable growth-supporting effects for S. toebii, indicating that common SGSF materials are widely present in various bacterial strains.

The Bacillus subtilis and Lactic Acid Bacteria Probiotics Influences Intestinal Mucin Gene Expression, Histomorphology and Growth Performance in Broilers

  • Aliakbarpour, H.R.;Chamani, Mohammad;Rahimi, G.;Sadeghi, A.A.;Qujeq, D.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.25 no.9
    • /
    • pp.1285-1293
    • /
    • 2012
  • The aim of the present study was to evaluate the effect of commercial monostrain and multistrain probiotics in diets on growth performance, intestinal morphology and mucin gene (MUC2) expression in broiler chicks. Three hundred seventy-eight 1-d-old male Arian broiler chicks were allocated in 3 experimental groups for 6 wk. The birds were fed on a corn-soybean based diet and depending on the addition were labeled as follows: control-unsupplemented (C), birds supplemented with Bacillus subtilis (BS) and lactic acid bacteria (LAB) based probiotics. Each treatment had 6 replicates of 21 broilers each. Treatment effects on body weight, feed intake, feed conversion ratio and biomarkers such as intestinal goblet cell density, villus length, villus width, and mucin gene expression were determined. Total feed intake did not differ significantly between control birds and those fed a diet with probiotics (p>0.05). However, significant differences in growth performance were found. Final body weight at 42 d of age was higher in birds fed a diet with probiotics compared to those fed a diet without probiotic (p<0.05). Inclusion of Bacillus subtilis based probiotic in the diets also significantly affected feed conversion rate (FCR) compared with control birds (p<0.05). No differences in growth performance were observed in birds fed different types of probiotic supplemented diets. Inclusion of lactic acid bacteria based probiotic in the diets significantly increased goblet cell number and villus length (p<0.05). Furthermore, diets with Bacillus subtilis based probiotics significantly increased gene expression (p<0.05), with higher intestinal MUC2 mRNA in birds fed diet with probiotics compared to those fed the control diet. In BS and LAB probiotic fed chicks, higher growth performance may be related to higher expression of the MUC2 gene in goblet cells and/or morphological change of small intestinal tract. The higher synthesis of the mucin gene after probiotic administration may positively affect bacterial interactions in the intestinal digestive tract, intestinal mucosal cell proliferation and consequently efficient nutrient absorption.

A Simple and Quantitative Method for the Enumeration of Total Coliforms and Escherichia coli

  • O, Gwan-Seok;Park, Tae-Hyeon
    • 한국생물공학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.815-818
    • /
    • 2001
  • Indicator organisms are frequently used to monitor bacterial contamination of water. The most common indicator organisms used in water quality monitoring are coliforms and Escherichia coli. To develop a rapid and quantitative method for detecting the coliforms and E. coli in water, cell growth kinetics and defined substrate technology were applied in this study.

  • PDF