Characterization of Growth-supporting Factors Produced by Geobacillus toebii for the Commensal Thermophile Symbiobacterium toebii

  • Kim, Joong-Jae (Department of Biological Sciences, Graduate School of Science, Osaka University) ;
  • Masui, Ryoji (Department of Biological Sciences, Graduate School of Science, Osaka University) ;
  • Kuramitsu, Seiki (Department of Biological Sciences, Graduate School of Science, Osaka University) ;
  • Seo, Jin-Ho (Department of Agricultural Biotechnology, Seoul National University) ;
  • Kim, Kwang (Department of Biological Sciences, Graduate School of Science, Osaka University) ;
  • Sung, Moon-Hee (Department of Bio & Nanochemistry, Kookmin Univerasity)
  • Published : 2008.03.31

Abstract

Symbiobacterium toebii is a commensal symbiotic thermophile that cannot grow without support from a partner bacterium. We investigated the properties of Symbiobacterium growth-supporting factors (SGSFs) produced by the partner bacterium Geobacillus toebii. SGSFs occurred in both the cell-free extract (CFE) and culture supernatant of G. toebii and might comprise multifarious materials because of their different biological properties. The heavy SGSF contained in the cytosolic component exhibited heat- and proteinase-sensitive proteinaceous properties and had a molecular mass of >50 kDa. In contrast, the light SGSF contained in the extracellular component exhibited heat-stable, proteinase-resistant, nonprotein properties and had a molecular mass of <10 kDa. Under morphological examination using light microscopy, S. toebii cultured with the culture supernatant of G. toebii was filamentous, whereas S. toebii cultured with the CFE of G. toebii was rod-shaped. These results strongly suggest that the SGSFs produced by G. toebii comprise two or more types that differ in their growth-supporting mechanisms, although all support the growth of S. toebii. Upon the examination of the distribution of SGSFs in other bacteria, both cytosolic and extracellular components of Geobacillus kaustophilus, Escherichia coli, and Bacillus subtilis had detectable growth-supporting effects for S. toebii, indicating that common SGSF materials are widely present in various bacterial strains.

Keywords

References

  1. Bae, J. W., S. K. Rhee, J. R. Park, B. C. Kim, and Y. H. Park. 2005. Isolation of uncultivated anaerobic thermophiles from compost by supplementing cell extract of Geobacillus toebii in enrichment culture medium. Extremophiles 9: 477-485 https://doi.org/10.1007/s00792-005-0467-y
  2. Gerhardt, P., R. G. E. Murray, R. N. Costilow, E. W. Nester, W. A. Wood, N. R. Krieg, and G. B. Philips. 1981. Metabolism. 17. Chemical composition, pp. 351-355. In R. S. Hansen and J. A. Phillips (eds.), Manual of Methods for General Bacteriology. American Society for Microbiology, Washington, D.C.
  3. Hugenholtz, P. 2002. Exploring prokaryotic diversity in the genomic era. Genome Biol. 3: 1-8
  4. Janssen, P. H., P. S. Yates, B. E. Grinton, P. M. Taylor, and M. Sait. 2002. Improved culturability of soil bacteria and isolation in pure culture of novel members of the divisions Acidobacteria, Actinobacteria, Proteobacteria, and Verrucomicrobia. Appl. Environ. Microbiol. 68: 2391-2396 https://doi.org/10.1128/AEM.68.5.2391-2396.2002
  5. Ju, D. H., M. K. Choi, J. H. Ahn, M. H. Kim, J. C. Cho, T. Kim, T. Kim, and J. O. Ka. 2007. Molecular and ecological analyses of microbial community structures in biofilms of a full-scale aerated up-flow biobead process. J. Microbiol. Biotechnol. 17: 253-261
  6. Kaeberlein, T., K. Lewis, and S. S. Epstein. 2002. Isolating "uncultivable" microorganisms in pure culture in a simulated natural environment. Science 296: 1127-1129 https://doi.org/10.1126/science.1070633
  7. Kamagata, Y. and H. Tamaki. 2005. Cultivation of uncultured fastidious microbes. Microbes Environ. 20: 85-91 https://doi.org/10.1264/jsme2.20.85
  8. Lee, D. G., S. J. Park, and S. J. Kim. 2007. Influence of pipe materials and VBNC cells on culturable bacteria in a chlorinated drinking water model system. J. Microbiol. Biotechnol. 17: 1558-1562
  9. Ohno, M., I. Okano, T. Watsuji, T. Kakinuma, K. Ueda, and T. Beppu. 1999. Establishing the independent culture of a strictly symbiotic bacterium Symbiobacterium thermophilum from its supporting Bacillus strain. Biosci. Biotechnol. Biochem. 63: 1083-1090 https://doi.org/10.1271/bbb.63.1083
  10. Ohno, M., H. Shiratori, M. J. Park, Y. Saitoh, Y. Kumon, N. Yamashita, A. Hirata, H. Hishida, K. Ueda, and T. Beppu. 2000. Symbiobacterium thermophilum gen. nov., sp. nov., a symbiotic thermophile that depends on co-culture with a Bacillus strain for growth. Int. J. Syst. Evol. Microbiol. 50: 1829-1832 https://doi.org/10.1099/00207713-50-5-1829
  11. Rhee, S. K., C. O. Jeon, J. W. Bae, K. Kim, J. J. Song, J. J. Kim, S. G. Lee, H. I. Kim, S. P. Hong. Y. H. Choi, S. M. Kim, and M. H. Sung. 2002. Characterization of Symbiobacterium toebii, an obligate commensal thermophile isolated from compost. Extremophiles 6: 57-64 https://doi.org/10.1007/s007920100233
  12. Rhee, S. K., S. G. Lee, S. P. Hong, Y. H. Choi, J. H. Park, C. J. Kim, and M. H. Sung. 2000. A novel microbial interaction: Obligate commensalism between a new Gramnegative thermophile and a thermophilic Bacillus strain. Extremophiles 4: 131-136 https://doi.org/10.1007/s007920070027
  13. Song, J., S. J. Yang, and J. C. Cho. 2007. "Bring to lab" of 19 novel species among 60 isolates retrieved from a freshwater pond. J. Microbiol. Biotechnol. 17: 168-175
  14. Sung, M. H., J. W. Bae, J. J. Kim, K. Kim, J. J. Song, S. K. Rhee, C. O. Jeon, Y. H. Choi, S. P. Hong, S. G. Lee, J. S. Ha, and G. T. Kang. 2003. Symbiobacterium toebii sp. nov., commensal thermophile isolated from Korean compost. J. Microbiol. Biotechnol. 13: 1013-1017
  15. Sung, M. H., H. Kim, J. W. Bae, S. K. Rhee, C. O. Jeon, K. Kim, J. J. Kim, S. P. Hong, S. G. Lee, J. H. Yoon, Y. H. Park, and D. H. Baek. 2002. Geobacillus toebii sp. nov., a novel thermophilic bacterium isolated from hay compost. Int. J. Syst. Evol. Microbiol. 52: 2251-2255 https://doi.org/10.1099/ijs.0.02181-0
  16. Tanaka, Y., S. Hanada, A. Manome, T. Tsuchida, R. Kurane, K. Nakamura, and Y. Kamagata. 2004. Catellibacterium nectariphilum gen. nov., sp. nov., which requires a diffusible compound from a strain related to the genus Sphingomonas for vigorous growth. Int. J. Syst. Evol. Microbiol. 54: 955-959 https://doi.org/10.1099/ijs.0.02750-0
  17. Tanaka, Y., S. Hanada, H. Tamaki, K. Nakamura, and Y. Kamagata. 2005. Isolation and identification of bacterial strains producing diffusible growth factor(s) for Catellibacterium nectariphilum strain AST4T. Microbes Environ. 20: 110-116 https://doi.org/10.1264/jsme2.20.110
  18. Ueda, K., H. Saka, Y. Ishikawa, T. Kato, Y. Takeshita, H. Shiratori, M. Ohno, K. Hosono, M. Wada, Y. Ishikawa, and T. Beppu. 2002. Development of a membrane dialysis bioreactor and its application to a large-scale culture of a symbiotic bacterium, Symbiobacterium thermophilum. Appl. Microbiol. Biotechnol. 60: 300-305 https://doi.org/10.1007/s00253-002-1117-2
  19. Ward, D. M., M. J. Ferris, S. C. Nold, and M. M. Bateson. 1998. A natural view of microbial biodiversity within hot spring cyanobacterial mat communities. Microbiol. Mol. Biol. Rev. 62: 1353-1370
  20. Watsuji, T., T. Kato, K. Ueda, and T. Beppu. 2006. CO$_2$ supply induces the growth of Symbiobacterium thermophilum, a syntrophic bacterium. Biosci. Biotechnol. Biochem. 70: 753-756 https://doi.org/10.1271/bbb.70.753
  21. Yu, J., W. Chung, T. K. Sohn, Y. H. Park, and H. Kim. 2006. Development of a meta-information system for microbial resources. J. Microbiol. Biotechnol. 16: 178-183
  22. Zengler, K., G. Toledo, M. Rappe, J. Elkins, E. J. Mathur, J. M. Short, and M. Keller. 2002. Cultivating the uncultured. Proc. Natl. Acad. Sci. USA 99: 15681-15686