• 제목/요약/키워드: backstepping controller

Search Result 118, Processing Time 0.026 seconds

A Posture Control for Underwater Vehicle with Nonholonomic Constraint (비 홀로노믹 구속조건을 이용한 수중 이동체의 자세제어에 관한 연구)

  • Nam, Taek-Kun;Kim, Chol-Seong
    • Journal of Navigation and Port Research
    • /
    • v.28 no.6
    • /
    • pp.469-474
    • /
    • 2004
  • In this paper, we study the posture control of an underwater vehicle with nonholonomic constraint. Generally, systems with nonholnomic constraints cannot be stabilized to an equilibrium points by smooth state feedback control. For the nonholonomic underwater vehicle system, we applied coordinate transformation to get multi-chained system We proposed non smooth feedback controller using backstepping method for stabilizing the multi chained form system Applying inverse input transformation to the non smooth feedback controller, we can get posture controller of the underwater vehicle with nonholonomic constraint. The proposed control scheme is applied to the posture control qf an underwater vehicle and verified the effectiveness of control strategy by numerical simulation.

A Design of Model Predictive Control and Nonlinear Disturbance Observer-based Backstepping Sliding Mode Control for Terrain Following (지형 추종을 위한 모델 예측제어와 비선형 외란 관측기를 이용한 백스테핑 슬라이딩 모드 제어기법 설계)

  • Dongwoo Lee;Kyungwoo Hong;Chulsoo Lim;Hyochoong Bang;Dongju Lim;Daesung Park;Kihoon Song
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.27 no.4
    • /
    • pp.495-506
    • /
    • 2024
  • In this study, we propose the terrain following algorithm using model predictive control and nonlinear disturbance observer-based backstepping sliding mode controller for an aircraft system. Terrain following is important for military missions because it helps the aircraft avoid detection by the enemy radar. The model predictive control is used to replace the generating trajectory and guidance with the flight path angle constraint. In addition, the aircraft is affected to the parameter uncertainty and unknown disturbance such as wind near the mountainous terrain. Therefore, we suggest the nonlinear disturbance-based backstepping sliding mode control method for the aircraft that has highly nonlinearity to enhance flight path angle tracking performance. Through the numerical simulation, the proposed method showed the better tracking performance than the traditional backstepping method. Furthermore, the proposed method presented the terrain following maneuver maintaining the desired altitude.

Robustness Analysis of Predictor Feedback Controller for Discrete-Time Linear Systems with Input Delays (입력지연을 갖는 이산시간 선형시스템을 위한 예측기 피드백 제어기의 강인성 해석)

  • Choi, Joon-Young
    • Journal of IKEEE
    • /
    • v.23 no.4
    • /
    • pp.1265-1272
    • /
    • 2019
  • We analyze the robustness of the existing predictor feedback controller for discrete-time linear systems with constant input delays against the structured model uncertainty. By modeling the constant input delay with a first-order PdE (Partial difference Equation), we replace the input delay with the PdE states. By applying a backstepping transformation, we build a target system that enables to construct an explicit Lyapunov function. Constructing the explicit Lyapunov function that covers the entire state variables, we prove the existence of an allowable maximum size of the structured model uncertainty to maintain stability and establish the robustness of the predictor feedback controller. The numerical example demonstrates that the stability of closed-loop system is maintained in the presence of the structured model uncertainty, and verifies the robustness of the predictor feedback controller.

Locally Optimal and Robust Backstepping Design for Systems in Strict Feedback Form with $C^1$ Vector Fields

  • Back, Ju-Hoon;Kang, Se-Jin;Shim, Hyung-Bo;Seo, Jin-Heon
    • International Journal of Control, Automation, and Systems
    • /
    • v.6 no.3
    • /
    • pp.364-377
    • /
    • 2008
  • Due to the difficulty in solving the Hamilton-Jacobi-Isaacs equation, the nonlinear optimal control approach is not very practical in general. To overcome this problem, Ezal et al. (2000) first solved a linear optimal control problem for the linearized model of a nonlinear system given in the strict-feedback form. Then, using the backstepping procedure, a nonlinear feedback controller was designed where the linear part is same as the linear feedback obtained from the linear optimal control design. However, their construction is based on the cancellation of the high order nonlinearity, which limits the application to the smooth ($C^{\infty}$) vector fields. In this paper, we develop an alternative method for backstepping procedure, so that the vector field can be just $C^1$, which allows this approach to be applicable to much larger class of nonlinear systems.

Disturbance observer based adaptive sliding mode control for power tracking of PWRs

  • Hui, Jiuwu;Yuan, Jingqi
    • Nuclear Engineering and Technology
    • /
    • v.52 no.11
    • /
    • pp.2522-2534
    • /
    • 2020
  • It is well known that the model of nuclear reactors features natural nonlinearity, and variable parameters during power tracking operation. In this paper, a disturbance observer-based adaptive sliding mode control (DOB-ASMC) strategy is proposed for power tracking of the pressurized-water reactor (PWR) in the presence of lumped disturbances. The nuclear reactor model is firstly established based on point-reactor kinetics equations with six delayed neutron groups. Then, a new sliding mode disturbance observer is designed to estimate the lumped disturbance, and its stability is discussed. On the basis of the developed DOB, an adaptive sliding mode control scheme is proposed, which is a combination of backstepping technique and integral sliding mode control approach. In addition, an adaptive law is introduced to enhance the robustness of a PWR with disturbances. The asymptotic stability of the overall control system is verified by Lyapunov stability theory. Simulation results are provided to demonstrate that the proposed DOB-ASMC strategy has better power tracking performance than conventional sliding mode controller and PID control method as well as conventional backstepping controller.

A Neural Network Adaptive Controller for Autonomous Diving Control of an Autonomous Underwater Vehicle

  • Li, Ji-Hong;Lee, Pan-Mook;Jun, Bong-Huan
    • International Journal of Control, Automation, and Systems
    • /
    • v.2 no.3
    • /
    • pp.374-383
    • /
    • 2004
  • This paper presents a neural network adaptive controller for autonomous diving control of an autonomous underwater vehicle (AUV) using adaptive backstepping method. In general, the dynamics of underwater robotics vehicles (URVs) are highly nonlinear and the hydrodynamic coefficients of vehicles are difficult to be accurately determined a priori because of variations of these coefficients with different operating conditions. In this paper, the smooth unknown dynamics of a vehicle is approximated by a neural network, and the remaining unstructured uncertainties, such as disturbances and unmodeled dynamics, are assumed to be unbounded, although they still satisfy certain growth conditions characterized by 'bounding functions' composed of known functions multiplied by unknown constants. Under certain relaxed assumptions pertaining to the control gain functions, the proposed control scheme can guarantee that all the signals in the closed-loop system satisfy to be uniformly ultimately bounded (UUB). Simulation studies are included to illustrate the effectiveness of the proposed control scheme, and some practical features of the control laws are also discussed.

Robust Adaptive Output Feedback Control for Nonlinear Systems with Higher Order Relative Degree

  • Michino, Ryuji;Mizumoto, Ikuro;Tao, Yuichi;Iwai, Zenta;Kumon, Makoto
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.78-83
    • /
    • 2003
  • In this paper, it is dealt with a controller design problem for nonlinear systems with higher order relative degree. A robust adaptive control for uncertain nonlinear systems with stable zero dynamics will be proposed based on the high-gain adaptive output feedback and backstepping strategies. The proposed method is useful in the case where only the output signal is available.

  • PDF

Robust Control of the Robotic Systems Using Self Recurrent Wavelet Neural Network via Backstepping Design Technique (벡스테핑 기법 기반 자기 회귀 웨이블릿 신경 회로망을 이용한 로봇 시스템의 강인 제어)

  • Yoo, Sung-Jin;Choi, Yoon-Ho;Park, Jin-Bae
    • Proceedings of the KIEE Conference
    • /
    • 2005.07d
    • /
    • pp.2711-2713
    • /
    • 2005
  • This paper presents the tracking control method of robotic systems with uncertainties using self recurrent wavelet neural network (SRWNN) via the backstepping design technique. The SRWNN is used as the uncertainty observer of the robotic systems. The adaptation laws for weights of the robotic systems are induced from the Lyapunov stability theorem, which are used for on-line controlling robotic systems. Computer simulations of a three-link robot manipulator with uncertainties verify the validity of the proposed SRWNN controller.

  • PDF

Robust Adaptive Control for Nonlinear Systems Using Nonlinear Disturbance Observer (외란 관측기를 이용한 비선형 시스템의 강인 적응제어)

  • Hwang, Young-Ho;Han, Byung-Jo;Kim, Hong-Pil;Yang, Hai-Won
    • Proceedings of the KIEE Conference
    • /
    • 2006.10c
    • /
    • pp.327-329
    • /
    • 2006
  • A controller is proposed for the robust adaptive backstepping control of a class of uncertain nonlinear systems using nonlinear disturbance observer (NDO). The NDO is applied to estimate the time-varying lumped disturbance in each step, but a disturbance observer error does not converge to zero since the derivative of lumped disturbance is not zero. Then the fuzzy neural network (FNN) is presented to estimate the disturbance observer error such that the outputs of the system are proved to converge to a small neighborhood of the desired trajectory. The proposed control scheme guarantees that all the signals in the closed-loop are semiglobally uniformly ultimately bounded on the basis of the Lyapunov theorem. Simulation results are presented to illustrate the effectiveness and the applicability of the approaches proposed.

  • PDF