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Robust Adaptive Control for Nonlinear Systems Using Nonlinear
Disturbance Observer
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Abstract - A controller is proposed for the robust adaptive backstepping control of a class of uncertain nonlinear
systems using nonlinear disturbance observer (NDQ). The NDO is applied to estimate the time-varying lumped
disturbance in each step, but a disturbance observer error does not converge to zero since the derivative of lumped
disturbance is not zero. Then the fuzzy neural network (FNN) is presented to estimate the disturbance observer error
such that the outputs of the system are proved to converge to a small neighborhood of the desired trajectory. The
proposed control scheme guarantees that all the signals in the closed-loop are semiglobally uniformly ultimately bounded
on the basis of the Lyapunov theorem. Simulation results are presented to illustrate the effectiveness and the applicability

of the approaches proposed.
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1. INTRODUCTION

The backstepping is one of the most important results,
which provides a powerful design tool, for nonlinear (and
linear) system in the pure feedback and strict feedback
forms [1]. In [2], [3] gain functions are assumed to be
unknown and a backstepping design is proposed that
incorporates adaptive neural network techniques.

This paper presents NDO for a class of time-varying
nonlinear systems with unknown lumped disturbances.
Then the fuzzy neural network (FNN) is presented to
estimate the disturbance observer error such that the
outputs of the system are proved to converge to a small
neighborhood of the desired trajectory.

With the proposed robust adaptive backstepping control
scheme, semiglobal uniform ultimate boundedness of all the
signals in the closed-loop are guaranteed, and the output
of the system is to a
neighborhood of the The
performance of the closed-loop system is guaranteed by
suitably choosing the design parameters

proven to converge small

desired trajectory. control

2. PROBLEM FORMULATION

The model of many practical nonlinear systems can be
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expressed in or transformed into a special state-space
form

&= fi(Z:) + gi(@)Tin + Li(Ti1,t) [ 1<i<n—1
En = fo(Tn)+ gn(@n)u + Ln(En,’U:,t), n>2
Y=z

(1

T .-
Ti=[z1,...,5:]" €ERLi=1...,n

where > denote the state
vector, “wE€R is the control, ¥€ R is the output,
(@), 9:(34) are a known function and £fi(@1), £g:()

are an unknown nonlinear function, di(t) is an unknown

external disturbance.
Li(Tin, t) = Afi(@) + Agi(@a)zi+ di(t) 0<i<n -1

and Ln(in, u, t):Afn(fn)+ Agn(fn)u—i—d"(t) repr-

esent a time-varying lumped disturbance.

Assumption : The signs of 9:() are known, and

there  exist  constants gia = gio >0 such  that

g1l Z’gi(')l 290, V5, eQCR"
3. NONLINEAR DISTURBANCE OBSERVER DESIGN

We consider a class of time-varying nonlinear first
order systems with lumped disturbance.

E=F(O)+3@u+d() @

where the scalar  variable 3 is the output,
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FO=FO+DF©), g TO=TaO+A5©

which 7" (5) N gﬂ (6) are a

Af(), AF(9)

known function and

are an unknown function, % is a control

input and d(t) is an unknown disturbance.

Equation (5) can be written in a nominal model form as

§=1a(&) +Fn€)u+ L(& 1) @

L(& 1) = AF () + A u +d(1)
time-varying lumped disturbance.

L(&t) =€ — (&) — Fn(E)u (4)

For the formulation of NDO, a new state variable 2z is

where represents  a

designed as

7=L(§t)-G¢ ©)
The NDO is formulated as

L(e3)=7+G¢

Z =Gz - G(fa(&) + Fn(&)u + GE) ®)
The disturbance observer error can be defined as
e = Z({,t)—Z(f,f) ()]

The equation of disturbance observer error is derived
from (3), (6) as

¢ = L(E1) + G (2 + Jn() + Tn(Eu + GE) - GE

=—Geg + L(&,0) ®

4. BACKSTEPPING CONTROLLER DESIGN
In this section, we will incorporate the proposed NDO
technique into control design scheme for the 7t th-order
system described by (1). Similar to the traditional
method, the
procedure contains 7 steps.
Step 1: At the step, we consider the first equation in (1),

= fi(z1) + g1(z1)z2 + L1(ZT2, t)

backstepping  design recursive  design

9

Li(Z2, t) = L1(T2, 22) + e , eI

where is disturbance

observer error.
At the step, NDO is formulated as

Li(@s, 21) = 21+ Gi1

21 = -Gz = G1(fi(z1) + g1(z1)z2 + Giz1) (10)

where G1>0 s a disturbance observer gain.
Let T1d =Yd and define €1 =1 — Z1d .

Its derivative is
=A@+ oo + LT, 21) +en —du

The state observer is proposed as

i1 = fi(z1) + q1(s1)z2 (T2, 21) +énn +m1(s1 — £1)

The disturbance observer error can be defined as

%1 =121 — %1 its derivative is
Wirer,g)+e1 (12

By employing a FNN virtual controller can be used as

f1=z1—& =-mi -

follows:
1 .
T2d = —C1€1 — ——— T
iy () + L@, )

+WiTr(e1,51) — ild) a3)

—_1r-1 . . . .
where [1=T11>04¢ 4 adaptation gain matrix.

Consider the following adaptation law
“‘,1 =T {¢1(61,51)(61 + £1) - 01W1} (14)

Step 7: This is the final step. In (1) when, consider the
following equation

&n = fn(@n)+ gn(En)u + Ln(Ent1, 1) (15)
NDO is formulated as
La(u, zn) = zn + Gnn
n=—Gnzn = Go(fa(En)+ gn(@n)t + Gntn) 16)
The state observer is proposed as
$n = fa(@n) + gn(@n)u +Li(u,20) +ELy +7n (20 — &n)

The state observer ermror can be defined as
Zn =Tn —Zn its derivative is
in =l‘n“(in Z_Wnin— ~11T¢"(e‘"riﬂ)+6" an
Choose the control
U= menct = nen = o (fa(@a) + Loy, 21)
+WnT¢n(emfin)—1.5nd) (18)

Consider the following adaptation law

Vf’u =Ty {¢n(en75n)(€n +£,,)—Uan} a9

Let €n =Cn0+Cnl and "7 = g"(in)(nﬂo + 77"1)

B _ s _o~or i
Vn < chek? anozk Z 1 29k(Tk)
N L S SN

i 205@E) (T 40kE)em 54 ( L)"“ 0

According to [3], equation(20) shows the stability and
control performance of the closed-loop adaptive system.

5. SIMULATION
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A simple simulation is presented to show the

effectiveness of the approach proposed above. The model
of the system is given as

&1 = fi(z1) + Afile1) + (91(z1) + Agr(z1)) o2 + da(t)
2 = f2(@2) + Afa(F2) + (92(F2) + Aga(F2)u + da(t)
y=11

fi(z1) = 0.5z, Afi(z1) = 2fi1(z1)

91(z1) =1+ 0.1z2, Agi(z1) = 2g1(21)

fo(Z2) = z1z2, Afa(z2) = 2f2(T2)

92(F2) = 2 + cos 21, Aga(T2) = 292(%2)

d1(t) = 0.2 cos(3t — 5.5), t>10
da(t) = 0.2cos(3t — 5.5), t > 15

The control objective is to guarantee all the signals in
the closed-loop system remain bounded and the output ¥
follows a desired trajectory ¥rgenerated from the
following van der Pol oscillator system:

Irl=2Zr2

Try =—Trl + ,8(1 - zgl)zrz

Yr = Td1
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Fig. 1. Qutput tracking error
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Fig. 2. Lumped 1 and its estimation
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Fig. 3. Lumped 2 and its estimation
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Fig. 4. Control input

The design parameters of the above controller are
c1=10, c2 =10 zpd B=02,
6. CONCLUSIONS

In this paper, a robust adaptive control scheme is
presented of a class of uncertain nonlinear system using
NDQO. All the signals of the closed-loop system are
guaranteed to be semiglobally uniformly ultimately
bounded, and the output of the system is proven to
converge to a small neighborhood of the desired trajectory.
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