• 제목/요약/키워드: backstepping control

검색결과 166건 처리시간 0.03초

Backstepping Control of a Buck-Boost Converter in an Experimental PV-System

  • Vazquez, Jesus R.;Martin, Aranzazu D.
    • Journal of Power Electronics
    • /
    • 제15권6호
    • /
    • pp.1584-1592
    • /
    • 2015
  • This paper presents a nonlinear method to control a DC-DC converter and track the Maximum Power Point (MPP) of a Photovoltaic (PV) system. A backstepping controller is proposed to regulate the voltage at the input of a buck-boost converter by means of Lyapunov functions. To make the control initially faster and avoid local maximum, a regression plane is used to estimate the reference voltages that must be obtained to achieve the MPP and guarantee the maximum power extraction, modifying the conventional Perturb and Observe (P&O) method. An experimental platform has been designed to verify the validity and performance of the proposed control method. In this platform, a buck-boost converter has been built to extract the maximum power of commercial solar modules under different environmental conditions.

유사 역보행 기법을 이용한 이동로봇의 추종제어 (Tracking Control of Wheeled Mobile Robots Using Pseudo-Backstepping Method)

  • 박재용;좌동경;홍석교
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 학술대회 논문집 정보 및 제어부문
    • /
    • pp.415-417
    • /
    • 2005
  • This paper proposes tracking control method using pseudo-backstepping control for wheeled mobile robots with nonholonomic constraints. First, the pseudo commands for forward linear velocity and angular velocity are chosen based on the kinematics. Then, the actual torque control inputs are designed to make the actual forward linear velocity and angular velocity follow the pseudo commands. Both semi-global practical posture(position and heading direction angle) stabilization and trajectory tracking are achieved for reference trajectories such as straight line and sinusoidal curve. The stability and performance analysed and numerical simulations are performed to confirm the effectiveness of the proposed scheme.

  • PDF

역보행 제어 형태의 궤환 선형화를 이용한 양방향 플래툰 제어 (Bidirectional Platoon Control Using Backstepping-Like Feedback Linearization)

  • 권지욱
    • 제어로봇시스템학회논문지
    • /
    • 제19권5호
    • /
    • pp.410-415
    • /
    • 2013
  • This paper proposes a bidirectional platoon control law using a coupled distance error based on the backstepping-like feedback linearization control method for an interconnected mobile agent system with a string structure. Unlike the previous results where the single agent was controlled using the only own information without other agents, the proposed control law cannot show the only distance error convergence of each agent, but also the string stability of the whole system. Also, the control performances are improved by the proposed control law in spite of low performance of bidirectional control strategy in the previous results. The proposed bidirectional platoon control algorithm is based on the backstepping-like feedback linearization control method. The position errors between each agent and the preceding and the behind agents are coupled by weighted summation. By the proposed control law, the distance error of each agent can converge to zero while the string stability is guaranteed when the coupled errors can converge to zero. To this end, the back-stepping control method is employed. The pseudo velocity input is determined considering the kinematic relationship between agents and the string stability. Then, the actual dynamic control input is determined to make the actual velocity converge to the pseudo velocity input. The stability analysis and the simulation results of the proposed method are included in order to demonstrate the practical application of the proposed algorithm.

ISMC와 백스테핑을 이용한 유연관절로봇의 강인한 임피던스제어 (Robust Impedance Control Using Robot Using ISMC and Backstepping in Flexible Joint Robot)

  • 권성하;박승규;김민찬
    • 한국정보통신학회논문지
    • /
    • 제21권3호
    • /
    • pp.643-650
    • /
    • 2017
  • 최근에 유연관절로봇의 제어는 로봇시스템에 있어서 다양한 적용가능성이 증가하고 있기 때문에 점점 그 중요성이 커지고 있다. 본 논문에서는 유연관절로봇의 제어에 있어서 적분슬라이딩모드제어기와 백스테핑제어기법을 도입하여 강인성을 증가시키는 방법을 제안한다. 슬라이딩모드제어기를 사용하여 강인성을 향상시키기 위해서는 제어대상이 정합조건을 만족시켜야 하는데 유연관절로봇은 이 조건을 만족시키지 못한다. 유연관절로봇은 링크측과 모터측으로 나누어 생각할 수 있고 각 측에 외란이 존재하나 실제입력은 모터측에 존재하기 때문에 링크측 외란은 정합조건을 만족시킬 수 없으므로 슬라이딩모드제어기로 제거하기가 어렵다. 이에 본 논문에서는 백스테핑을 도입하여 이러한 비정합 문제를 해결함으로써 링크측 외란의 영향을 제거할 수 있도록 한다. 이와 더불어 임피던스제어 성능을 가질 수 있도록 적분슬라이딩모드제어기를 함께 사용한다.

Robust Position Control of One DOF Mechanical Systems Using Dual PIOs Without Velocity Measurement

  • Han, Minsoo;Lee, Cho Won;Yook, Joo-Hyoung;Son, Young Ik
    • Journal of Electrical Engineering and Technology
    • /
    • 제12권1호
    • /
    • pp.356-362
    • /
    • 2017
  • This paper presents a robust position controller for a one degree-of-freedom (DOF) mechanical system using only position measurement. In order to alleviate the performance degradation owing to various uncertainties, a two-stage design method is studied by employing a proportional integral observer (PIO). In the first stage, a baseline backstepping controller is designed for a nominal system without accounting for uncertainties. The PIO is developed for estimating both the velocity information for the backstepping controller and an equivalent input disturbance for a feedforward compensation using the estimated uncertainty. It is shown that the estimation errors with the proposed PIO can be made arbitrarily small in a finite time. If the system suffers from undesirable actuator nonlinearities, however, it might be necessary to estimate the velocity and the disturbance with different rates of convergence. The proposed method combines the predesigned backstepping controller and dual PIOs to reduce mechanical vibrations as well as steady-state errors. The performance of the proposed method is tested through comparative computer simulations and experiments using a laboratory prototype.

AC 서보 모터의 위치제어를 위한 비선형 적응제어 (Nonlinear adaptive control for position tracking of AC servo-motors)

  • 이현배;박정동;국태용
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1996년도 한국자동제어학술회의논문집(국내학술편); 포항공과대학교, 포항; 24-26 Oct. 1996
    • /
    • pp.314-317
    • /
    • 1996
  • In this paper, we present a nonlinear adaptive controller for position tracking of induction motors. In constructing the adaptive controller, a backstepping approach is used under the condition of full state information, while a nonlinear observer is adopted for rotor flux estimation. The adaptive controller is shown to drive the state variables of system to the desired ones asymptotically and whose effectiveness is also shown via computer simulation.

  • PDF

ADAPTIVE BACKSTEPPING CONTROL FOR SATELLITE FORMATION FLYING WITH MASS UNCERTAINTY

  • Lim, Hyung-Chul;Bang, Hyo-Choong;Lee, Sang-Jong
    • Journal of Astronomy and Space Sciences
    • /
    • 제23권4호
    • /
    • pp.405-414
    • /
    • 2006
  • Satellite formation flying has become a critical issue in the aerospace engineering because it is considered as an enabling technology for many space missions. Thus, many nonlinear control theories have been developed for the tracking problem of satellite formation flying, which include full-nonlinear dynamics, external disturbances and parameter uncertainty. In this study, nonlinear adaptive control law is developed using an adaptive backstepping technique to solve the relative position tracking problem of the satellite formation flying in the presence of mass uncertainty and the bounded external disturbance. Simulation studies are included to demonstrate the proposed controller performance. The proposed controller is shown to guarantee the system stability against the external bounded disturbances in the presence of mass uncertainty.

Analysis, Control, and Synchronization of a 3-D Novel Jerk Chaotic System with Two Quadratic Nonlinearities

  • VAIDYANATHAN, SUNDARAPANDIAN
    • Kyungpook Mathematical Journal
    • /
    • 제55권3호
    • /
    • pp.563-586
    • /
    • 2015
  • In this research work, a seven-term 3-D novel jerk chaotic system with two quadratic nonlinearities has been proposed. The basic qualitative properties of the novel jerk chaotic system have been described in detail. Next, an adaptive backstepping controller is designed to stabilize the novel jerk chaotic system with two unknown parameters. Moreover, an adaptive backstepping controller is designed to achieve complete chaos synchronization of the identical novel jerk chaotic systems with two unknown parameters. MATLAB simulations have been shown in detail to illustrate all the main results developed for the 3-D novel jerk chaotic system.

비선형 외란 관측기를 이용한 유도전동기의 강인 적응 백스테핑 제어 (Robust Adaptive Backstepping Control of Induction Motors Using Nonlinear Disturbance Observer)

  • 이은욱
    • 전기학회논문지P
    • /
    • 제57권2호
    • /
    • pp.127-134
    • /
    • 2008
  • In this paper, we propose a robust adaptive backstepping control of induction motors with uncertainties using nonlinear disturbance observer(NDO). The proposed NDO is applied to estimate the time-varying lumped uncertainty which are derived from unknown motor parameters and load torque, but NDO error does not converge to zero since the derivate of lumped uncertainty is not zero. Then the fuzzy neural network(FNN) is presented to estimate the NDO error such that the rotor speed to converge to a small neighborhood of the desired trajectory. Rotor flux and inverse time constant are estimated by the sliding mode adaptive flux observer. Simulation results are provided to verify the effectiveness of the proposed approach.

적응백스테핑기법을 이용한 비선형시스템 강인제어 (Robust Control of Nonlinear System using Adaptive Backstepping Technique)

  • 현근호;김동헌;김응석;김홍필;양해원
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2001년도 하계학술대회 논문집 D
    • /
    • pp.2087-2088
    • /
    • 2001
  • In this paper we presents a speed controller for permanent magnet synchronous motor using adaptive backstepping technique. The adaptive backstepping technique takes system nonlinearity into account in the control system design stage. The proposed control and adaptive law is proved to be asymptotically stable by the Lyapunov stability theory.

  • PDF