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Abstract. In this research work, a seven-term 3-D novel jerk chaotic system with two

quadratic nonlinearities has been proposed. The basic qualitative properties of the novel

jerk chaotic system have been described in detail. Next, an adaptive backstepping con-

troller is designed to stabilize the novel jerk chaotic system with two unknown parameters.

Moreover, an adaptive backstepping controller is designed to achieve complete chaos syn-

chronization of the identical novel jerk chaotic systems with two unknown parameters.

MATLAB simulations have been shown in detail to illustrate all the main results devel-

oped for the 3-D novel jerk chaotic system.

1. Introduction

Chaos theory describes the qualitative study of unstable aperiodic behaviour
in deterministic nonlinear dynamical systems. A chaotic system is mathematically
defined as a dynamical system with at least one positive Lyapunov exponent. In
simple language, a chaotic system is a dynamical system, which is very sensitive to
small changes in the initial conditions. Interest in nonlinear dynamics and in par-
ticular chaotic dynamics has grown rapidly since 1963, when Lorenz published his
numerical work on a simplified model of convection and discussed its implications
for weather prediction [5].

Nonlinear dynamics occurs widely in engineering, physics, biology and many
other scientific disciplines [14]. Poincaré was the first to observe the possibility of
chaos, in which a deterministic system exhibits aperiodic behaviour that depends
on the initial conditions, thereby rendering long-term prediction impossible, since
then it has received much attention [27, 16].

Chaos has developed over time. For example, Ruelle and Takens [34] proposed a
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theory for the onset of turbulence in fluids, based on abstract considerations about
strange attractors. Later, May [22] found examples of chaos in iterated mappings
arising in population biology. Feigenbaum [9] discovered that there are certain
universal laws governing the transition from regular to chaotic behaviours. That
is, completely different systems can go chaotic in the same way, thus, linking chaos
and phase transitions.

One of the hallmarks of nonlinear dynamics is the concept of equilibrium, which
helps in characterizing a system’s behaviour - especially its long-term motion. There
are numerous types of equilibrium behaviour that can occur in continuous dynamical
systems, but such long-time behaviours are restricted by the number of degrees-of-
freedom (that is, by the dimensionality) of the system. In order words, one ignores
the transient behaviour of a dynamical system and only considers the limiting be-
haviour as t→ ∞.

Chaos is a kind of motion, which is erratic, but not simply quasiperiodic with
large number of periods [2]. Chaotic behaviour has been observed in driven acous-
tic systems, resonantly forced surface water, irradiated superconducting Josephson
junction, ac-driven diode circuits, driven piezoelectric resonators, periodically forced
neural oscillators, Ratchets, periodically modulated Josephson junction, the rigid
body, gyroscopes, etc. For the motion of a system to be chaotic, the system variables
should contain nonlinear terms and it must satisfy three properties: boundedness,
infinite recurrence and sensitive dependence on initial conditions.

The study of chaos in the last decades had a tremendous impact on the founda-
tions of science and engineering and one of the most recent exciting developments
in this regard is the discovery of chaos synchronization, whose possibility was first
reported by Fujisaka and Yamada [10] and later by Pecora and Carroll [24].

Different types of synchronization such as complete synchronization [24], anti-
synchronization [45, 55, 46], hybrid synchronization [49, 15], lag synchronization
[31], phase synchronization [31, 32], anti-phase synchronization [4], generalized syn-
chronization [35], projective synchronization [21], generalized projective synchro-
nization [36, 37, 65], etc. have been studied in the chaos literature.

Since the discovery of chaos synchronization, different approaches have been
proposed to achieve it, such as PC method [24], active control method [1, 71, 12, 66],
adaptive control method [47, 48, 38, 67], backstepping control method [53, 28, 29,
52, 30, 68], sliding mode control method [73, 51, 56, 69, 23, 63], etc.

The first famous chaotic system was accidentally discovered by Lorenz, when he
was deriving a mathematical model for atmospheric convection [19]. Subsequently,
Rössler discovered a chaotic system in 1976 [33], which is algebraically simpler than
the Lorenz system.

Some well-known 3-D chaotic systems are Arneodo system [3], Sprott systems
[39], Chen system [8], Lü-Chen system [20], Liu system [18], Cai system [6], T-
system [54], etc. Many new chaotic systems have been also discovered like Li sys-
tem [17], Sundarapandian system [44], Vaidyanathan systems [58, 59, 60, 61, 62, 70],
Vaidyanathan-Madhavan system [64], Sundarapandian-Pehlivan system [50], Pehli-
van system [25], Jafari system [13], Pham system [26], etc.
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In the recent decades, there is some good interest in finding novel chaotic sys-
tems, which can be expressed by an explicit third order differential equation de-
scribing the time evolution of the single scalar variable x given by

(1.1)
...
x = j(x, ẋ, ẍ)

The differential equation (1.1) is called “jerk system” because the third order
time derivative in mechanical systems is called jerk. Sprott’s work [39] on jerk
systems inspired Gottlieb [11] to pose the question of finding the simplest jerk
function that generates chaos. This question was successfully answered by Sprott
[40], who proposed a jerk function containing just three terms with a quadratic
nonlinearity:

(1.2) j(x, ẋ, ẍ) = −Aẍ+ ẋ2 − x (with A = 2.017)

Sprott showed that the jerk system with the jerk function (1.2) is chaotic with
the Lyapunov exponents L1 = 0.0550, L2 = 0 and L3 = −2.0720, and corresponding
to Kaplan-Yorke dimension of DKY = 2.0265.

Motivated by the research on jerk systems in the literature like the Sprott system
with the jerk function (1.2), this research work announces a 3-D novel jerk chaotic
system with two quadratic nonlinearities. The work on jerk functions and jerk
chaotic systems are related to mechanical systems and the research on the control,
chaos and synchronization of jerk systems have important literature on mechanical
systems involving jerk functions.

First, we detail the fundamental qualitative properties of the novel jerk chaotic
system. We show that the novel chaotic system is dissipative and derive the Lya-
punov exponents and Kaplan-Yorke dimension of the novel jerk chaotic system.

Next, this paper derives an adaptive backstepping control law that stabilizes the
novel jerk chaotic system about its unique equilibrium point at the origin, when the
system parameters are unknown. The backstepping control method is a recursive
procedure that links the choice of a Lyapunov function with the design of a controller
and guarantees global asymptotic stability of strict feedback systems [7, 72, 57].

This paper also derives an adaptive backstepping control law that achieves
global chaos synchronization of the identical 3-D novel jerk chaotic systems with
unknown parameters. All the main adaptive results in this paper are proved us-
ing Lyapunov stability theory. MATLAB simulations are depicted to illustrate the
phase portraits of the novel jerk chaotic system, dynamics of the Lyapunov expo-
nents, adaptive stabilization and synchronization results for the novel jerk chaotic
system.

2. A 3-D Novel Jerk Chaotic System

Recently, there is some interest in finding chaotic jerk functions having the
special form

(2.1)
...
x +Aẍ+ ẋ = G(x),
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where G is a nonlinear function having some special properties [41].
Such systems are called as chaotic memory oscillators in the literature. In [43],

Sprott has made an exhaustive study on autonomous dissipative chaotic systems.
Especially, Sprott has listed a set of 16 chaotic memory oscillators (Table 3.3, p. 74,
[43]), named as MO0,MO1, . . . ,MO15 with details of their Lyapunov exponents.

In this work, we propose a new jerk system, which is given in a system form as

(2.2)

 ẋ1 = x2
ẋ2 = x3
ẋ3 = ax1 − bx2 − x3 − x21 − x22

where a and b are positive parameters.
In this paper, we shall show that the system (2.2) is chaotic when the parameters

a and b take the values

(2.3) a = 7.5, b = 4

The system (2.2) with parameter values fixed at a = 7.5 and b = 4 will be
chaotic for all initial conditions. In fact, the Lyapunov exponents of the system
(2.2) are obtained as

(2.4) L1 = 0.12476, L2 = 0, L3 = −1.12451

The presence of a positive Lyapunov exponent, L1, shows that the system (2.2)
is chaotic and the motion is dissipative since L1 + L2 + L3 < 0.

Thus, for all initial conditions, the system (2.2) is chaotic with a strange chaotic
attractor.

For numerical simulations, we take the initial conditions of the system (2.2) as

(2.5) x1(0) = 0.2, x2(0) = 0.6, x3(0) = 0.4

The initial conditions in (2.5) have been chosen arbitrarily for the sake of sim-
ulations. For other initial conditions in R3 also, the system (2.2) is chaotic with a
similar strange attractor.

Figure 1 depicts the chaotic attractor of the novel jerk system (2.2) in 3-D view,
while in Figures 2-4, the 2-D projection of the strange chaotic attractor of the novel
jerk chaotic system (2.2) on (x1, x2), (x2, x3) and (x3, x1) planes, is shown, respec-
tively.

3. Analysis of the 3-D Novel Jerk System

In this section, we describe the fundamental properties of the 3-D novel jerk
chaotic system described by (2.2).
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3.1 Dissipativity

In vector notation, the new jerk system (2.2) can be expressed as

(3.1) ẋ = f(x) =

 f1(x1, x2, x3)
f2(x1, x2, x3)
f3(x1, x2, x3)

 ,
where

(3.2)

 f1(x1, x2, x3) = x2
f2(x1, x2, x3) = x3
f3(x1, x2, x3) = ax1 − bx2 − x3 − x21 − x22

Let Ω be any region in R3 with a smooth boundary and also, Ω(t) = Φt(Ω),
where Φt is the flow of f . Furthermore, let V (t) denote the volume of Ω(t).

By Liouville’s theorem, we know that

(3.3) V̇ (t) =

∫
Ω(t)

(∇ · f) dx1 dx2 dx3

The divergence of the novel jerk system (3.1) is found as:

(3.4) ∇ · f =
∂f1
∂x1

+
∂f2
∂x2

+
∂f3
∂x3

= −1 < 0

Inserting the value of ∇ · f from (3.4) into (3.3), we get

(3.5) V̇ (t) =

∫
Ω(t)

(−1) dx1 dx2 dx3 = −V (t)

Integrating the first order linear differential equation (3.5), we get

(3.6) V (t) = exp(−t)V (0)

Thus, V (t) → 0 exponentially as t → ∞. This shows that the novel 3-D jerk
chaotic system (2.2) is dissipative. Hence, the system limit sets are ultimately con-
fined into a specific limit set of zero volume, and the asymptotic motion of the novel
jerk chaotic system (2.2) settles onto a strange attractor of the system.

3.2 Equilibrium Points

The equilibrium points of the 3-D novel jerk chaotic system (2.2) are obtained
by solving the equations

(3.7)
f1(x1, x2, x3) = x2 = 0
f2(x1, x2, x3) = x3 = 0
f3(x1, x2, x3) = ax1 − bx2 − x3 − x21 − x22 = 0


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We take the parameter values as in the chaotic case, viz. a = 7.5 and b = 4.
Thus, the equilibrium points of the system (2.2) are characterized by the equa-

tions

(3.8) ax1 − x21 = 0, x2 = 0, x3 = 0

Solving the system (3.8), we get the equilibrium points of the system (2.2) as

(3.9) E0 =

 0
0
0

 , E1 =

 7.5
0
0


To test the stability type of the equilibrium points E0 and E1, we calculate the

Jacobian matrix of the novel jerk chaotic system (2.2) at any point x = x⋆:

(3.10) J (x⋆) =

 0 1 0
0 0 1

7.5− 2x⋆1 −4− 2x⋆2 −1


We note that

(3.11) J0
∆
= J(E0) =

 0 1 0
0 0 1
7.5 −4 −1


which has the eigenvalues

(3.12) λ1 = 1.1555, λ2,3 = −1.0778± 2.3085i

This shows that the equilibrium point E0 is a saddle-focus point.
Next, we note that

(3.13) J1
∆
= J(E1) =

 0 1 0
0 0 1

−7.5 −4 −1


which has the eigenvalues

(3.14) λ1,2 = 0.2737± 2.1845i, λ3 = −1.5474

This shows that the equilibrium point E1 is also a saddle-focus point.
Hence, the novel jerk chaotic system (2.2) has two equilibrium points E0 and

E1 defined by (3.9), which are saddle-foci. Thus, the equilibrium points E0 and E1

are unstable equilibrium points.

3.3 Lyapunov Exponents and Kaplan-Yorke Dimension
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For the parameter values defined in (2.3), the Lyapunov exponents of the 3-D
novel jerk system (2.2) are numerically obtained using MATLAB as

(3.15) L1 = 0.12476, L2 = 0, L3 = −1.12451

Thus, the maximal Lyapunov exponent (MLE) of the novel jerk system (2.2) is
positive, which means that the system has a chaotic behavior.

Since L1+L2+L3 = −0.99975 < 0, it follows that the novel jerk chaotic system
(2.2) is dissipative.

Also, the Kaplan-Yorke dimension of the novel jerk chaotic system (2.2) is
obtained as

(3.16) DKY = 2 +
L1 + L2

|L3|
= 2.11095

The importance of calculating Kaplan-Yorke dimension, DKY , can be explained
as follows. DKY represents an upper bound for the information dimension of the
system [42].

Figure 5 depicts the dynamics of the Lyapunov exponents of the novel jerk
chaotic system (2.2).

4. Adaptive Backstepping Control of the 3-D Novel Jerk Chaotic System
with Unknown Parameters

In Section 3.2, we showed that the novel jerk chaotic system has two equilibrium
points E0 and E1, which are unstable. Thus, the novel jerk chaotic system is an
unstable chaotic system.

In this section, we use backstepping control method to derive an adaptive feed-
back control law for globally stabilizing the 3-D novel jerk chaotic system with
unknown parameters.

Thus, we consider the 3-D novel jerk chaotic system given by

(4.1)


ẋ1 = x2

ẋ2 = x3

ẋ3 = ax1 − bx2 − x3 − x21 − x22 + u

where a and b are unknown constant parameters, and u is a backstepping control
law to be determined using estimates â(t) and b̂(t) for a and b, respectively.

The parameter estimation errors are defined as:

(4.2)

{
ea(t) = a− â(t)

eb(t) = b− b̂(t)
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Differentiating (4.2) with respect to t, we obtain the following equations:

(4.3)

 ėa(t) = − ˙̂a(t)

ėb(t) = − ˙̂
b(t)

Next, we shall state and prove the main result of this section.

Theorem 4.1. The 3-D novel jerk chaotic system (4.1), with unknown parameters
a and b, is globally and exponentially stabilized by the adaptive feedback control law,

(4.4) u(t) = −(3 + â(t))x1 − (5− b̂(t))x2 − 2x3 + x21 + x22 − kz3

where k > 0 is a gain constant,

(4.5) z3 = 2x1 + 2x2 + x3,

and the update law for the parameter estimates â(t), b̂(t) is given by

(4.6)


˙̂a(t) = x1z3
˙̂
b(t) = −x2z3

Proof. We prove this result via backstepping control method and Lyapunov stability
theory.

First, we define a quadratic Lyapunov function

(4.7) V1(z1) =
1

2
z21

where

(4.8) z1 = x1

Differentiating V1 along the dynamics (4.1), we get

(4.9) V̇1 = z1ż1 = x1x2 = −z21 + z1(x1 + x2)

Now, we define

(4.10) z2 = x1 + x2

Using (4.10), we can simplify the equation (4.9) as

(4.11) V̇1 = −z21 + z1z2

Secondly, we define a quadratic Lyapunov function

(4.12) V2(z1, z2) = V1(z1) +
1

2
z22 =

1

2

(
z21 + z22

)
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Differentiating V2 along the dynamics (4.1), we get

(4.13) V̇2 = −z21 − z22 + z2(2x1 + 2x2 + x3)

Now, we define

(4.14) z3 = 2x1 + 2x2 + x3

Using (4.14), we can simplify the equation (4.13) as

(4.15) V̇2 = −z21 − z22 + z2z3

Finally, we define a quadratic Lyapunov function

(4.16) V (z1, z2, z3, ea, eb) = V2(z1, z2) +
1

2
z23 +

1

2
e2a +

1

2
e2b

which is a positive definite function on R5.
Differentiating V along the dynamics (4.1), we get

(4.17) V̇ = −z21 − z22 − z23 + z3(z3 + z2 + ż3)− ea ˙̂a− eb
˙̂
b

Eq. (4.17) can be written compactly as

(4.18) V̇ = −z21 − z22 − z23 + z3S − ea ˙̂a− eb
˙̂
b

where

(4.19) S = z3 + z2 + ż3 = z3 + z2 + 2ẋ1 + 2ẋ2 + ẋ3

A simple calculation gives

(4.20) S = (3 + a)x1 + (5− b)x2 + 2x3 − x21 − x22 + u

Substituting the adaptive control law (4.4) into (4.20), we obtain

(4.21) S = (a− â)x1 − (b− b̂)x2 − kz3

Using the definitions (4.3), we can simplify (4.21) as

(4.22) S = eax1 − ebx2 − kz3

Substituting the value of S from (4.22) into (4.18), we obtain

(4.23) V̇ = −z21 − z22 − (1 + k)z23 + ea

(
x1z3 − ˙̂a

)
+ eb

(
−x2z3 − ˙̂

b
)

Substituting the update law (4.6) into (4.23), we get

(4.24) V̇ = −z21 − z22 − (1 + k)z23 ,
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which is a negative semi-definite function on R5.
From (4.24), it follows that the vector z(t) = (z1(t), z2(t), z3(t)) and the pa-

rameter estimation error (ea(t), eb(t)) are globally bounded, i.e.

(4.25)
[
z1(t) z2(t) z3(t) ea(t) eb(t)

]
∈ L∞

Also, it follows from (4.24) that

(4.26) V̇ ≤ −z21 − z22 − z23 = −∥z∥2

That is,

(4.27) ∥z∥2 ≤ −V̇

Integrating the inequality (4.27) from 0 to t, we get

(4.28)

t∫
0

|z(τ)|2 dτ ≤ V (0)− V (t)

From (4.28), it follows that z(t) ∈ L2.
From Eq. (4.1), it can be deduced that ż(t) ∈ L∞.
Thus, using Barbalat’s lemma, we conclude that z(t) → 0 exponentially as

t→ ∞ for all initial conditions z(0) ∈ R3.
Hence, it is immediate that x(t) → 0 exponentially as t → ∞ for all initial

conditions x(0) ∈ R3.
This completes the proof. 2

For the numerical simulations, the classical fourth-order Runge-Kutta method
with step size h = 10−8 is used to solve the system of differential equations (4.1)
and (4.6), when the adaptive control law (4.4) is applied.

The parameter values of the novel jerk chaotic system (4.1) are taken as a = 7.5
and b = 4, and the positive gain constant as k = 10.

Furthermore, as initial conditions of the novel jerk chaotic system (4.1), we
take x1(0) = 3.2, x2(0) = −4.5 and x3(0) = 7.1. Also, as initial conditions of the

parameter estimates â(t) and b̂(t), we take â(0) = 12.7 and b̂(0) = 17.5.
In Figure 6, the exponential convergence of the controlled states x1(t), x2(t), x3(t)

is depicted, when the adaptive control law (4.4) and (4.6) are implemented.

5. Adaptive Backstepping Synchronization of the Identical 3-D Novel
Jerk Chaotic Systems with Unknown Parameters

In this section, we use backstepping control method to derive an adaptive control
law for globally and exponentially synchronizing the identical 3-D novel jerk chaotic
systems with unknown parameters.
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As the master system, we consider the 3-D novel jerk chaotic system given by

(5.1)


ẋ1 = x2

ẋ2 = x3

ẋ3 = ax1 − bx2 − x3 − x21 − x22

where x1, x2, x3 are the states of the system, and a and b are unknown constant
parameters.

As the slave system, we consider the controlled 3-D novel jerk chaotic system
given by

(5.2)


ẏ1 = y2

ẏ2 = y3

ẏ3 = ay1 − by2 − y3 − y21 − y22 + u

where y1, y2, y3 are the states of the system, and u is a backstepping control to be
determined using estimates â(t) and b̂(t) for a and b, respectively.

We define the synchronization errors between the states of the master system
(5.1) and the slave system (5.2) as

(5.3)

 e1 = y1 − x1
e2 = y2 − x2
e3 = y3 − x3

Then the error dynamics is easily obtained as

(5.4)

 ė1 = e2
ė2 = e3
ė3 = ae1 − be2 − e3 − y21 − y22 + x21 + x22 + u

The parameter estimation errors are defined as:

(5.5)

{
ea(t) = a− â(t)

eb(t) = b− b̂(t)

Differentiating (5.5) with respect to t, we obtain the following equations:

(5.6)

 ėa(t) = − ˙̂a(t)

ėb(t) = − ˙̂
b(t)

Next, we shall state and prove the main result of this section.

Theorem 5.1. The identical 3-D novel jerk chaotic systems (5.1) and (5.2) with
unknown parameters a and b are globally and exponentially synchronized by the
adaptive control law

(5.7) u(t) = −(3 + â(t))e1 − (5− b̂(t))e2 − 2e3 + y21 + y22 − x21 − x22 − kz3
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where k > 0 is a gain constant,

(5.8) z3 = 2e1 + 2e2 + e3,

and the update law for the parameter estimates â(t), b̂(t) is given by

(5.9)


˙̂a(t) = e1z3
˙̂
b(t) = −e2z3

Proof. We prove this result via backstepping control method and Lyapunov stability
theory.

First, we define a quadratic Lyapunov function

(5.10) V1(z1) =
1

2
z21

where

(5.11) z1 = e1

Differentiating V1 along the error dynamics (5.4), we get

(5.12) V̇1 = z1ż1 = e1e2 = −z21 + z1(e1 + e2)

Now, we define

(5.13) z2 = e1 + e2

Using (5.13), we can simplify the equation (5.12) as

(5.14) V̇1 = −z21 + z1z2

Secondly, we define a quadratic Lyapunov function

(5.15) V2(z1, z2) = V1(z1) +
1

2
z22 =

1

2

(
z21 + z22

)
Differentiating V2 along the error dynamics (5.4), we get

(5.16) V̇2 = −z21 − z22 + z2(2e1 + 2e2 + e3)

Now, we define

(5.17) z3 = 2e1 + 2e2 + e3

Using (5.17), we can simplify the equation (5.16) as

(5.18) V̇2 = −z21 − z22 + z2z3
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Finally, we define a quadratic Lyapunov function

(5.19) V (z1, z2, z3, ea, eb) = V2(z1, z2) +
1

2
z23 +

1

2
e2a +

1

2
e2b

which is a positive definite function on R5.
Differentiating V along the error dynamics (5.4), we get

(5.20) V̇ = −z21 − z22 − z23 + z3(z3 + z2 + ż3)− ea ˙̂a− eb
˙̂
b

Eq. (5.20) can be written compactly as

(5.21) V̇ = −z21 − z22 − z23 + z3S − ea ˙̂a− eb
˙̂
b

where

(5.22) S = z3 + z2 + ż3 = z3 + z2 + 2ė1 + 2ė2 + ė3

A simple calculation gives

(5.23) S = (3 + a)e1 + (5− b)e2 + 2e3 − y21 − y22 + x21 + x22 + u

Substituting the adaptive control law (5.7) into (4.20), we obtain

(5.24) S = (a− â(t))e1 − (b− b̂(t))e2 − kz3

Using the definitions (5.6), we can simplify (5.24) as

(5.25) S = eae1 − ebe2 − kz3

Substituting the value of S from (5.25) into (5.21), we obtain

(5.26) V̇ = −z21 − z22 − (1 + k)z23 + ea

(
z3e1 − ˙̂a

)
+ eb

(
−z3e2 − ˙̂

b
)

Substituting the update law (5.9) into (5.26), we get

(5.27) V̇ = −z21 − z22 − (1 + k)z23 ,

which is a negative semi-definite function on R5.
From (5.27), it follows that the vector z(t) = (z1(t), z2(t), z3(t)) and the pa-

rameter estimation error (ea(t), eb(t)) are globally bounded, i.e.

(5.28)
[
z1(t) z2(t) z3(t) ea(t) eb(t)

]
∈ L∞

Also, it follows from (5.27) that

(5.29) V̇ ≤ −z21 − z22 − z23 = −∥z∥2
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That is,

(5.30) ∥z∥2 ≤ −V̇

Integrating the inequality (5.30) from 0 to t, we get

(5.31)

t∫
0

|z(τ)|2 dτ ≤ V (0)− V (t)

From (5.31), it follows that z(t) ∈ L2.
From Eq. (5.4), it can be deduced that ż(t) ∈ L∞.
Thus, using Barbalat’s lemma, we conclude that z(t) → 0 exponentially as

t→ ∞ for all initial conditions z(0) ∈ R3.
Hence, it is immediate that e(t) → 0 exponentially as t → ∞ for all initial

conditions e(0) ∈ R3.
This completes the proof. 2

For the numerical simulations, the classical fourth-order Runge-Kutta method
with step size h = 10−8 is used to solve the system of differential equations (5.1)
and (5.2).

The parameter values of the novel jerk chaotic systems are taken as a = 7.5 and
b = 4, and the positive gain constant as k = 10.

Furthermore, as initial conditions of the master chaotic system (5.1), we take
x1(0) = 2.5, x2(0) = 1.8 and x3(0) = −1.7. As initial conditions of the slave
chaotic system (5.2), we take y1(0) = 4.3, y2(0) = −2.8 and y3(0) = 6.2. Also, as

initial conditions of the parameter estimates â(t) and b̂(t), we take â(0) = 12.5 and

b̂(0) = 3.2.
In Figures 7-9, the complete synchronization of the identical 3-D jerk chaotic

systems (5.1) and (5.2) is shown, when the adaptive control law and the parameter
update law are impelemented.

Also, in Figure 10, the time-history of the synchronization errors e1(t), e2(t), e3(t),
is shown.

6. Conclusions

In this paper, we proposed a novel seven-term jerk chaotic system with two
quadratic nonlinearities. Dynamic characteristics of new system has been discov-
ered. It is worth noting that the possibilities of control and synchronization of such
system with unknown parameters are verified by constructing an adaptive backstep-
ping controller. The main results were established using adaptive control theory and
Lyapunov stability theory. MATLAB simulations were shown to demonstrate all
the main results developed in this paper. It is possible to use the new jerk sys-
tem in potential chaos-based applications such as secure communications, random
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generation, or path planning for autonomous mobile robots. It is believed that the
unknown dynamical behaviors of such strange chaotic jerk systems could be further
investigated in future research.
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Figure 1: Strange attractor of the 3-D novel jerk system
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Figure 2: 2-D projection of the 3-D novel jerk system on (x1, x2)-plane
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Figure 3: 2-D projection of the 3-D novel jerk system on (x2, x3)-plane
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Figure 4: 2-D projection of the 3-D novel jerk system on (x3, x1)-plane
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Figure 5: Dynamics of the Lyapunov exponents of the 3-D novel jerk system
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Figure 6: Time-history of the controlled states x1(t), x2(t), x3(t)
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Figure 7: Synchronization of the states x1(t) and y1(t)
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Figure 8: Synchronization of the states x2(t) and y2(t)
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Figure 9: Synchronization of the states x3(t) and y3(t)
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Figure 10: Time-history of the synchronization errors e1(t), e2(t), e3(t)


